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Abstract—HTTP video is quickly becoming a dominating
type of traffic on the Internet, with popular services such
as YouTube and Netflix being used by hundreds of millions
of users daily, and showing ever-growing usage numbers.
Understanding Quality of Experience (QoE) for these ser-
vices is an important topic, and one that has been addressed
in the literature. However, the available works focus on the
impact of application-level events (e.g. stalls) on the perceived
quality, but not on the underlying cause, i.e., network-level
impairments, as the relation between Quality of Service
(QoS) and QOoE is significantly more complex than it was
in the case of RTP/UDP based video, due to HTTP video
being streamed over TCP. In this paper we present a first
step in the direction of solving this QoS-to-QoE mapping
for HTTP video, by providing a (parametric) layered model
approach for network-side QoE monitoring.
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I. INTRODUCTION

HTTP video is currently one of the most popular
service types, and one of the largest contributors to overall
traffic on the Internet. Some forecasts are predicting that
by 2019, video will account for up to 80% of consumer
traffic [1]. The businesses around online video are also
massive, with YouTube alone having over 1Bn users!, and
several hundred million hours of video streamed per day,
with yearly growth of ~50%. Similarly, Netflix has over
60M subscribers worldwide (40M in the US alone), and
accounts for a large portion of last-mile traffic in the US.

In order to keep all those users satisfied, the perfor-
mance of the video streaming services needs to be good
enough to achieve acceptable quality levels, lest users
abandon a session, or worse still, abandon a service.
The quality of HTTP video depends on many factors,
including Content Delivery Network (CDN) and caching
strategies, encoding parameters, player buffering and adap-
tation techniques, and of course, the performance of the
network(s) over which it is transmitted. Unlike UDP/RTP
video, where poor network performance (e.g., losses, or
excessive delay and jitter) led to video artifacts due to
dropped or late frames, in HTTP video, poor network
performance translates into stall events (caused by playout
buffer underruns), and in some cases lowered video quality
as a result of adaptation, by using technologies such as
Dynamic Adaptive Streaming over HTTP (DASH) [2],
which can change the video’s representation in order to
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overcome network impairments, e.g., using lower bit-rates
when facing network congestion.

The fact that HTTP video is streamed over TCP, to-
gether with the different existing buffering and adaptation
strategies, make external prediction of stall events (and
their duration) hard to do. Yet, for some of the stakeholders
in the delivery chain, notably network providers, it is
important to be able to monitor service performance, as
they are often the first ones to be blamed when a service
does not work properly.

Ideally, network providers would be able to monitor
network QoS for video traffic, and detect (or even better,
predict) when QoS issues will lead to quality degradation
for the users. This would enable them to take active steps
in order to solve the problems in a timely fashion. To do
this, one must first understand how network impairments
affect the buffering performance of the video players,
how the adaptation mechanisms in the players react to
this, and how their reaction feeds back into the network
performance. This is still an open problem.

In this paper we provide a first (and humble) step
towards a solution for this problem, by showing that in
the absence of adaptation, the perceived quality for HTTP
video can be estimated with at least a one minute granu-
larity and with minimal knowledge of player parameters
(buffer size and segment lengths). We do this by layering
two models, one for the buffer performance as a function
of the network QoS, and another one for perceived quality
as a function of buffer performance. This layered approach
has several benefits, as it allows a clean separation of
concerns and expertise in the modelling process, as well
as the possibility of using several different models (or
make the models parametric in order to accommodate
different scenarios) in order to accommodate different
services. QoE in the literature is widely understood to be
of multidimensional nature, being influenced by many dif-
ferent factors (for example human and contextual factors
in addition to technical ones). While this study covers only
technical influence factors and perceptual dimensions of
QoE, the presented layered model itself can be extended
to cover other input factor spaces.

The rest of the paper is organized as follows. Section II
provides an overview of related work and the layered
modeling approach we took. In Section III, we describe
the experiments carried out for this work, and their results.
Section IV deals with the modelling and the performance



of the models obtained. We conclude the paper and discuss
future work in Section V.

II. BACKGROUND
A. Related Work

With the explosion of video streaming services like
YouTube, Vimeo and later Netflix, HBO Go, etc., the
importance of QoE for HTTP-based streaming services
increased and a wealth of literature has been written on the
topic. HTTP video presents different challenges for quality
assessment than RTP/UDP video did, as the impairments
to which the user is subjected are very different. Whereas
in RTP/UDP?, network impairments such as losses and
jitter result in visible and audible artifacts (and hence
clear quality degradation), HTTP streams manifest these
QoS issues as stalls in the playback and initial waiting
times. Hence, the quality experienced by the users is no
longer dominated by artifacts®, but rather by the pauses in
playback — their frequency and duration — and to a lesser
degree by the initial waiting time before playback starts,
as unlike in the case of real-time streams, HTTP video
players buffer several seconds’ worth of content before
starting playback.

With respect to waiting times, it has been shown that
even relatively large initial waiting times do not have
a large impact on quality [3], [4], and that the main
source of annoyance for the users are playback stall events.
Moreover, some results [5], [6] show that the distribution
of the stalling times, in particular the number of stall
events, has a significant impact on quality. This precludes
simple metrics such as total stalling times from being
sufficient for providing accurate quality estimates.

With the introduction of DASH [2] and other adaptive
streaming technologies, new QoE influence factors related
to the adaptation (e.g. the types of adaptation, and adapta-
tion strategies used by the player) became relevant to the
quality of HTTP streams.

An excellent overview of QoE issues for adaptive HTTP
streaming is given by Seufert et al. in [7].

For the most part, the efforts found in the literature
have been focused on understanding the relations between
stalls, start up delays, adaptation-related factors, and per-
ceived quality. The network aspects, however, are often
ignored or subsumed into the buffer performance. An
exception to this is the very interesting work of Mok
et al. [6], which proposes something quite similar to
what we propose in this paper, namely, the integration
of network performance and perceived quality models.
Our work differs from theirs in several important aspects.
Firstly, we consider DASH streams instead of Flash-
based ones (despite not considering adaptation in this
work, we do consider other DASH parameters such as
segment length). Secondly, their subjective assessment
presents certain flaws (low number of subjects, use of
a single source clip) which we have avoided. We have

2 And other “real-time” streaming protocols and approaches.
3Though depending on the aggressiveness of the encoding, artifacts
may be evident.
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Figure 1: Layered models for mapping network QoS to perceived quality

also considered the distribution of stalls and their relative
durations, which was not a factor in their study. Our
results show that the stall durations are significant (in line
with e.g. [5]), whereas their results claim that they are
not. On the network performance side, our approach is
also different from theirs. They consider packet loss and
round-trip time (RTT) as their QoS factors, whereas we
considered packet loss and mean loss burst size, but not
RTT. The reason for this is that bursty loss events are more
common than excessively long RTTs in wireless networks,
which are becoming a dominant use case for HTTP video.

B. Layered Models for QoE Monitoring

When dealing with HTTP video and transmission im-
pairments, the mapping from QoS metrics to perceived
quality is complicated by two facts, namely that a playout
buffer sits in between, and that the streaming is done over
TCP. TCP assures in-order delivery of all frames, and the
video player, as opposed to RTP/UDP players, doesn’t
skip over late frames, but waits for them to be delivered.
This leads to a situation where there are no visual quality
impairments, but stalls and rebuffering events. QoE models
for HTTP video, as mentioned in Section II-A, typically
take these stall events (and other parameters such as start-
up delay, and adaptation events) as a basis for making
predictions of QoE. Integrating the QoS-to-buffer mapping
into such a model is complex, and does not follow a
“separation of concerns” strategy.

In [8], the authors propose a layered approach to build-
ing QoE models, whereby models for different parts of
the overall system (including performance models for the
technical parts of it, but also context and user models)
can be stacked on top of each other, with the higher-level
models feeding off the outputs of the lower-level models.
This approach has also been adopted for a QoE monitoring
architecture by ETSI [9] standardisation body.

Following that approach, our modelling strategy com-
prises two models, one mapping network-level QoS to
application-level QoS (buffer behavior), and the second
one mapping that application-level QoS to user perception,
as depicted in Figure 1.

III. EXPERIMENT DESIGN

The results presented in this paper stem from two
separate experiments, one for understanding the impact
of playout stall events on the subjective perception of the
video streams, and the other one for understanding the



impact of network QoS on the playout buffer behavior
(notably, stall events). In this section we describe both
experiments and their respective results.

A. Subjective Assessment of HTTP Video

1) Evaluation methodology and test session structure:
We chose the subjective assessment methodology follow-
ing the results of Garcia et al.[10]. In line with other
studies on HTTP video quality, we used a Single-Stimulus
(SS) with Absolute Category Rating (ACR), in order to
obtain results comparable with the available literature, and
in accordance to the ITU-T P.913 recommendation [11].

For better granularity in the voting, we extended the
standard five-point ACR scale into a nine-point scale by
adding an intermediate (unlabelled) voting option between
the original categories as illustrated in Table I. The voting
prompt presented to participants was Please rate your
viewing experience.

In order to provide a suitable variety to the number and
duration of stall events, we used one minute-long samples.

Table I: The rating scaled used in the subjective assessment to answer
the prompt: Please rate your viewing experience

Value 1 1.5 2 2.5 3 35 4 5.4 5
Label Bad Poor Fair Good Excellent

For each sample, the following procedure was carried
out: after the user clicked the Start-button, playback of
the one-minute long video sample started immediately. As
soon as the sample playback finished, user was presented a
rating scale (radio buttons on grey screen on background).
The voting time was not restricted. Once the user rated
the sample and clicked the Continue-button, a new sample
started after 3 seconds of displaying grey screen (with text
Next video sample starting...) to let user prepare for the
upcoming sample.

The overall test session had the following structure.
When a participant arrived, she was greeted and offered
some refreshments in order to help her detach from the
daily work and thoughts. Then she was asked to read
the instructions (possible questions were answered by
the operator) after which she did a training session to
familiarize with the test and voting tool (the training
content was not present in actual test session). Then the
actual test of 46 samples was performed by the participant,
with enforced 2 minute pause after the 23rd sample. When
the participant had finished all the tests, she was asked
to fill a post-session survey and was rewarded with two
movie tickets.

2) Material and conditions: The video sample material
was chosen to represent typical video streaming content.
The original videos are listed in Table II. Additionally,
clips from the movie Grace of Monaco were used during
training. The content was copied from the purchased Blue
Ray discs and edited into clips of one minute length *. The
video streams in final clips were encoded in high bitrate

4The actual duration varied slightly, so as to preserve the semantic
content of the scenes cut, and not to create interruptions in the dialog

of approximately 15 Mbit/s, with frame rate of 25 fps and
resolution of 1920x1080 pixels using H.264 video codec
(High Profile, level 4.1). Audio tracks were encoded in
bitrate of 192 kbit/s using AC-3 codec. The clips were
chosen to be diverse in terms of scene cuts, movement
and panning. The audio was considered in editing so that
no clip starts or ends with interrupted utterance or sound
(in some cases a controlled fade out was added).

The controlled variables (also called independent vari-
ables) are listed in Table III. The number of stalling events
N refers to the number of events during the video sample,
when the playback halts (because there is not enough
data in player’s buffer). The maximum of three stalls
was chosen with presumption that it would be already
intolerable for the most users (which was not interestingly
the case). The total stalling time T ;o4 Was the second
controlled variable. It is the cumulative sum of lengths
of stalls during the playback. The final controlled variable
was the pattern in which the stalls of different lengths were
presented to participants, P;. Table III shows the exact
patterns. There are patterns that have only equal length
stalls, patterns that have increasing trend in stall length and
patterns that have decreasing trend in stall length during
the playback. As some combinations are not possible (e.g.
pattern U:U> and single stalling) and as stalling lengths
were integer values (for implementation reasons), there
were total of 21 different conditions.

The stall patterns generation was based upon YouTube
traces graciously provided by Columbia University, col-
lected as part of the YouSlow [12]. From the trace data
analysis, it emerged that a 2-state Markov chain is suffi-
cient to generate stall patterns statistically similar to those
observed in actual YouTube usage.

The low number of tested conditions allowed extra
measures for decreasing statistical noise, which was found
especially important as the actual buffering event instanti-
ation had a random element due to use of Markov chain.
To this end, participants evaluated each condition twice
(but with different content and with different instantiation
of stall pattern). We also added two repeated cases (with
the same content) to allow consistency checking later on.
Due to the way realistic stall patterns were generated (see
below), 2 extra cases of 12 second/3 stalls conditions
were added after closer examination of the generated stall
patterns. The content for test conditions was randomly
drawn from the pool of samples. The resulting total
number of test conditions was 46. The tested conditions
were presented to each participant in randomized order in
order to compensate any learning effect.

The test design allows analyzing also implicitly intro-
duced independent variables (that were not controlled).
The times, lengths and number of the stall events are
known and can be used to calculate variables such as
average stall length and inter-stall length. However, their

5In order to refer to the approximate relative duration of stalls, refer to
U as the “unit”, or smallest stall observed, and G to mean “greater than
the unit”. A pattern of U:U means two equally long stallings, whereas a
G:U:G pattern implies a long-short-long relation between three stalls.



Table II: Contents used for the subjective assessment

Movie Description Visual stimulus Audio stimulus
Metsian Tarina Document about life in Finnish  Fauna, flora and nature details Narrator voice, nature’s sounds
forests

Need For Speed 4

Action movie

Fast objects, people, scene cuts

Stalingrad War movie People, buildings, weapons

Toy story 3 Animation Characters of Toy story, computer
generated graphics

Transcendence Sci-fi drama People, technology of future, scener-

Transformers 3

Sci-fi action

ies
Aliens, robots, people, dinosaurs, fast
objects

Dialogues, sounds of sports cars
Dialog, narrative, sounds of war
Dialogues, sound effects

Dialogues

Dialogues, sounds of large scale ma-
chinery

Table III: Controlled Variables

Table V: Demographics of the subjective assessment campaign.

Controlled Description Levels
Variable
Ng Number of stalling O, 1,2,3
events in sample
Ts total Total stalling time in 0, 1, 2, 3, 6, 12
sample
P Stalline pattern U, U.U, UG, G:U, U:U.U, U:UG,
s ep G:U:U (U=Unit, G=Greater)
Table IV: Test environment parameters
Parameter Value
Lighting level (background) 2.0 Ix
Screen illuminance (peak) 129 cd/m?

Noise level Quiet, background noise of 38 dBA due to

air conditioning

Peak audio volume 79 dBA

Viewing distance 3.2H

Environment Controlled

Monitor Sony 55X8505B TV

Size of monitor
Audio system

557, 16:9 aspect ratio
TV’s built in loudspeakers

analysis is beyond the scope of this paper. Initial delay was
left out from the list of controlled variables. As discussed
in Section II-A its impact on QOE is not as large as that
of stalling and rebuffering events.

3) Environment and demographics: The room where
the tests were done was a living room-like space built
into a closed laboratory space. The instructions of ITU-T
P.913[11] were followed where applicable. The lights and
audio volume were adjusted according ITU-T P911 [13].
The environment parameters are summarized in Table IV.

The samples were presented to participants by means
of custom software driving the VLC media player. The
stall events were generated by pausing the playback with
timers. During a stall event a buffering indicator was
rendered on top of the paused picture.

Table V summarizes the key demographics data for the
assessment. This data was not used in the analysis related
to the results of presented work.

4) Voting statistics: We did a Shapiro-Wilk normality
test for the collected voting data from the user campaign
and found the votes to be normally distributed with alpha
level 0.05 (p = 0.832). The outlier detection described in
ITU-R BT.500 [14] yielded no outliers among the test sub-
jects. Next, we studied the Standard deviation of Opinion
Scores (SOS) test proposed in [15]. Figure 2 shows the
standard deviation as a function of Mean Opinion Score

Category Count
Female 8
Male 14
20 - 29

30 - 39

40 - 50

Not familiar

Slightly familiar
Moderately familiar
Very familiar
Extremely familiar
Occasionally

Several times a week
Daily

Less critical

Similar

More critical

Gender

Age group

Familiarity with HTTP video
streaming technologies

Video service consumption

Assumed criticality at home
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Figure 2: Standard deviation of Opinion Scores

(MOS) and the fit to the theoretical behavior of standard
deviation. The figure shows that the users were not diverse
in voting behaviour which implies good agreement and
understanding of the task. Also the so called a-value
(0.098) is just below, but rather close to the values in
comparable studies (about video streaming) presented in
[15].

Next, we looked at the significance of the effects of
the independent variables, N, T ;ota1, Ps had on depen-
dent variable QoFE, (denoting the perceived quality). A
type I ANOVA was calculated in order to capture any
interactions, and no interactions were detected. We then



Table VI: Main Effects (Type II ANOVA)

Independent Variable  F-value  p-value
N 28.148 <0.001
’Ts,total 110.151 <0.001
P 1.703 0.198
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Figure 3: MOS as a function of number of stalls for different total stalling
lengths

did a three-way type II ANOVA to calculate the main
effects shown in Table VI (significant ones bolded). N
and T ;otqr were found significant and P insignificant
on alpha level 0.05.

Figure 3 illustrates how MOS behaves as a function
of number of stalls, for each of the total stall times
considered. The observed MOS values are comparable
(albeit slightly higher) to previous results in the literature
(e.g. [3], [16]). Both N and T totq; have an effect on
perceived quality (in most cases no overlapping confidence
intervals). The first stalling event has higher negative im-
pact than subsequent ones. The calculated MOS conforms
also to the Weber-Fechner Law (WFL) [17] regarding
at least N, (similar can be observed for T ;o1 When
Ny = 3). According to WFL the relationship between
the magnitude of a stimulus and perceived quality (or
other perceived intensity of the stimulus) is of logarithmic
nature.

Finally, we conducted an analysis of the possible fatigue
and learning effects on the assessment. The fatigue test
showed no evidence of fatigue on the results. We also
studied the effect of the previous test condition on the
current vote. Figure 4 illustrates the effect of the previous
test condition on the mean deviation of MOS for controlled
variable N,. The results show that with no stalls in previ-
ous condition, the voting behaviour differs from the cases
with one or more stalls experienced in previous condition
with the highest deviation (around 0.5) found for Ny = 1.
Furthermore, the results from Type I ANOVA show that
the number of stalls (/V,) effect is in fact significant on
alpha level 0.05 (mean deviations are different, p = 0.02).
This effect is not observable in the MOS due to the random
order in which we presented the test conditions to the

0.7
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0 1 2 3

Number of stalls in previous condition

Figure 4: The effect of previous condition on the mean deviation of MOS
for controlled variable Ng

subjects.

B. Measuring the Impact of QoS on Buffer Behavior

1) Simulation environment: We built a simulation en-
vironment for capturing the relation between buffering
events in DASH streaming application and the network
conditions considered. In these tests, some simplifications
were done in order to make the variable space manageable.
In line with the quality assessment campaign described in
Section III-A, we left adaptations out of the scope in order
to first understand how the player buffer behaves in single
bitrate configuration.

The simulation environment is illustrated in Figure 5. It
consists of three computers joined by a 1 Gbps Ethernet
network. The network was isolated in order to prevent
unwanted network fluctuations and disturbances. Host 3
was running an instance of Nginx HTTP server that served
the DASH formatted media files to client executed on
Host 1. Host 1 was connected to Host 3 via Host 2 that
acted as a L2 network bridge and an emulated network.
Network emulation was done with regular Netem and was
controlled remotely by the Testing scripts. The streaming
client in Host 1 is an in-house developed DASH simulation
tool that can calculate the buffer utilization during a
streaming session without the actual playback. The tests
were configured and executed by a set of scripts executed
in Host 1.

An execution of single tested condition had following
steps: 1) Load the test condition containing player and
network parameters, 2) configure network emulation, 3)
configure DASH streaming application, 4) start DASH
playback session and 5) after the 1-minute playback ses-
sion, collect the results (statistics about buffering events).

2) Tested conditions: The work was done iteratively in
order to identify the most important controlled variables
and their ranges. After each of the iterative runs (in
total 5 of them), the intermediate results were analyzed
and range(s) of controlled variables were adjusted. For
example, the original test set included three different one
minute video samples. Preliminary analysis showed that
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Figure 5: Network QoS to DASH events simulation environment

Variable Description Levels
Controlled variable
Lsegment DASH segment length 2,6,10s
Tousfer Buffer length 2,4,8,16s
0, 0.6, 1.2, 4.8, 9.6, 14.4,
PL Packet loss rate ]’9'2 %
B Available network band- 5, 6, 7, 8, 8.5, 9, 9.5, 10,

width 15 Mbit/s

Dependent variables
N Number of stalling events
s

during a condition
Total stalling time during

T. L
s;total a condition

Table VII: Controlled QoS and dependent application variables

there was a minor content effect, but other factors were
much stronger. Furthermore, we realized that the most
important factor was the relation between nominal video
bitrate and available bandwidth (as discussed in [5]). As
a result, only one H.264 video clip, with average bitrate
of 9 Mbit/s was included, allowing the inclusion of new
data points to input factor B, available bandwidth.

Table VII lists the controlled (independent) vari-
ables and outcome (dependent) variables of the QoS to
DASH events simulation (originally mean loss burst size,
MLBS, was one of the controlled variables, but due
to observed inaccuracy of netem it was dropped out of
the analysis). During each test all the 2268 combinations
(including MLBS) were iterated, resulting in run times of
about 38h per test.

3) Results: Figure 6 illustrates the nature and the
magnitude of the main effects and the strongest detected
interactions. The individual main effects are extracted by
aggregating the full result data set without filtering (there-
fore for example zero packet loss shows some stalling
events). As can be observed, both N, and T ;o141 are
affected by all the independent variables, while T ;ota1
is least affected by Lsegment. Table VIII shows the in-
teractions observed by the Type I ANOVA. Because of
the numerous interactions in the result data (especially
regarding dependent variable N;), we do not present the
significance of individual main effects. Also, the detailed
analysis of the interactions is left out of this paper. Instead
we use a machine learning approach to model the relation
between network QoS and DASH events, for capturing the
effects of interactions into a mapping function.

Independent Variable Ns Ts ,total

F-value p-value F-value p-value
Lsegment - Tbuffe'r‘ 77.2 <0.001 0.25 0.620
Lsegment - PL 81.8 <0.001 2.519 0.113
segment - B 3.812 0.051 0.026 0.872
Tbuffe'r‘ -PL 90.58 <0.001 2250 <0.001
Tbuffer -B 5.825 0.016 0.009 0.923
PL-B 11.35 <0.001 0.303 0.582

Table VIII: Interactions between independent variables per dependent
variables

IV. MODELLING
A. Perceived Quality Model

The modelling of the dependent variable QoE, as a
function of the number of stallings Ny and the total stalling
time T ;o1q1 Was done with linear regression. It was
possible to choose such a simple approach as there were
no interactions, the main effects were clear and number of
independent variables was small. The fit was verified with
cross validation (5-fold with 80 %/ 20 % split between
training and test sets). Equation (1) shows an instance of
linear regression model from one of the training/test set
splits.

QoEp =4.56 — 0.36 Ns — 0.09T ;otq1 | Ns €0...3 and

(1)
Ts totar €0...12

B. Buffer Performance Model

The high complexity and many interactions described
in Section III-B3 precluded use of simple modelling
approaches such as linear regression. Instead, two neural
networks were trained and tested using the data from
measurements described in Section III-B; one for pre-
dicting N, and another one for predicting T’ ¢otq; from
independent variables Lgcgments Thuf fer>» P L and B. Each
neural network (created using the neuralnet package in
R) had 5 input neurons, 10 hidden neurons and 1 output
neuron. 10-fold cross-validation was performed (with 90
% / 10 % split to training and test sets). The performance
and accuracy of the model is discussed in next section
together with QoE model.

C. Accuracy of the Models

The performances of both perceived quality and DASH
event prediction models were verified via series of cross-
validations. For the subjective model, we used a five-fold
cross-validation with 80 % / 20 % split between training
sets and test sets. The average prediction performance
indicates good fit with Pearson correlation of 0.94. The
two DASH buffer event models (stalls prediction model
and total stalling time prediction model) were verified with
ten-fold cross-validation with a 90 % / 10 % split. Both
models verify well with Pearson correlations of 0.988 and
0.997, respectively.

The results we present here rely on the assumption that
the models will provide accurate results when chained.
Given the remarkable accuracy of both DASH buffer event
models, it seems reasonable that the outputs of these
models can be fed into the perceived quality model without
causing significant variability beyond the accuracy of the
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Figure 6: Main effects

quality model itself. However, proper validation of the
layered model via a new, specifically crafted subjective
assessment campaign with samples created under specific
network conditions is still needed before making stronger
claims about the models’ performance.

V. CONCLUSIONS

In this paper we have proposed a novel layered model
mapping network QoS metrics to DASH streaming quality
as perceived by the users, in the absence of adaptations.
The model is composed of two simpler models, one for
mapping the QoS metrics to the DASH buffer’s perfor-
mance (in terms of number of stalling events and overall
stall duration), and a second one, mapping that buffer
performance into perceived quality (which as for other
media services, will likely be one of the most influential
dimensions of QoE). A subjective assessment campaign
was carried out to train the quality model, and a large-
scale measurement campaign in a purpose-built test-bed
was used to train the buffer performance model.

The subjective assessment results show that both the
number of stalls and stalling time have a significant
effect on perceived quality. From the perspective of the
assessment itself, an effect of number of stalls in previous

condition was also observed, which may deserve further
analysis.

The QoS-to-Buffer measurement results show that
DASH buffer events depend on various network QoS
parameters in a non-trivial manner, as well as some
application-dependent factors. The resulting models (QoS-
to-Buffer and Buffer-to-Quality) were verified via cross-
validation, and found to have very good correlation with
observed results (= 0.99 and 0.94 average Pearson corre-
lation over the cross-validation test sets, respectively).

Having this type of model at our disposal enables us to
do network-side perceived quality (and hence, by proxy,
QoE) estimations for over-the-top HTTP video streaming,
which is a topic of particular interest to network operators.

The subjective assessment campaign, as well as the
buffer performance measurements, were carried out over
one-minute intervals, which means that the resulting mod-
els are accurate to within one-minute granularity. Future
work (on-going as of this writing) includes shorter-term
(say, five to ten seconds) prediction of stall events based
on the occurrence of network impairments.

Having verified that this approach yields good results,
we have two further lines of research in our road map. The
first one is the inclusion of adaptation in the DASH player,



which is the most glaringly missing item in this work. The
second one, is the development of more statistically useful
models (as described, e.g., in [18]), providing for instance
estimations of the distribution of MOS values, or values
for key percentiles, rather than simply a MOS.
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