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Abstract—Managing QoE is one of the most interesting direct
applications of workable QoE models. Indeed, being able to
predict how users perceive the quality of a service allows the
service provider(s) to optimize its delivery, based on several
possible criteria. It has been argued, however, that the MOS is ill-
suited for this type of application, and that different measures —
e.g., rating distributions or quantiles — are better suited for the
task. In this paper we build on these ideas by adding the notions
of QoE fairness (as opposed to QoS fairness) and user diversity,
and discuss how the choice of measures used, the importance
of fairness, and how the variations between users can affect the
optimal QoE management choices for service providers.

Keywords—Quality of Experience (QoE); Quality of Service
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I. INTRODUCTION

From a service provider’s perspective, QoE is a means
to an end: better quality leads to more satisfied users and
possibly a differentiating factor against competing services,
and it therefore leads to a larger user base and lower churn
rates [1]. But providing higher QoE to users typically implies
higher operational costs (e.g., in terms of resources used for
service delivery). The goal for a service provider is, typically,
to maximize their profits, and thus maximizing QoE for all
users can be sub-optimal for the service provider’s bottom line.

In practice, the goal will be to provide sufficient quality so
that a suitably large proportion of users feel that the value they
get from the service (utility) is commensurate to its cost (be
it monetary or otherwise). It is also known that different users
will perceive both quality and value differently [2], and that
some users will be more critical than others [3]. The problem
thus becomes one of finding the right trade off between the
QoE provided and the costs incurred in providing it, taking
into account the variations between users and a somewhat
“fair” approach to provisioning quality among them, so that
the service provider’s goals become attainable.

Previous studies have argued that objective QoE models
based on Mean Opinion Scores (MOS) may be ill-suited for
QoE management purposes, as variations between users are
averaged out [4], [5]. Thus considering a service provider
point of view, other QoE metrics, e.g., rating distributions or
quantiles, may provide more meaningful input [6]. Given a
QoE optimization problem (e.g., deciding on an optimal re-
source allocation, service configuration, adaptive video playout
strategy, etc.) considering both quality and fairness objectives,
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it remains unclear as to what are the implications of consider-
ing different QoE metrics (referring to the mapping between
QoS and QoE) on the QoE management solution/outcome.
Moreover, given the impact of user diversity on different QoE
metrics, to what extent does user diversity impact the QoE
management outcome for different chosen QoE metrics? In
this paper, we address these issues and argue that there is no
optimal approach to solving this problem in the general case.
The right choice of QoE metrics to use will depend, not only on
the service provider’s constraints, but also on the diversity of
the users, and the importance that the service provider assigns
to being QoE-fair.

The reminder of this paper is structured as follows. Section
IT gives a background of related work, while Section III
discusses different QoE metrics relevant for the QoE man-
agement process. In Section IV we use a simple case study
to illustrate the impact of utilizing different QoE metrics
when determining an optimal resource allocation, thereby also
considering fairness and user diversity. Section V highlights
the main findings presented in this paper and gives directions
for future work.

II. BACKGROUND AND RELATED WORK

QoE management mechanisms commonly refer to some
form of network or service management decisions which are
driven by the aim of optimizing end user QoE [7], [1].
Examples include QoE-driven resource allocation mechanisms,
service adaptation mechanisms, etc. These mechanisms are
built on top of QoE models, which provide QoE estimates
based on a set of underlying influence factors (system, user,
and/or context factors). Focusing on system factors, such
models are derived based on subjective user studies and map
QoS measurements (at the network or application layer) to
QoE values.

While the majority of studies to-date addressing QoE
estimation models rely on MOS values derived from subjective
data, other studies have shown that different metrics beyond
MOS may be of potential interest to service/network providers
[6]. Statistical measures providing insight into score distri-
butions and quantiles give providers a clearer view of how
quality is actually perceived by the user population, rather
than estimating the quality as perceived by an “average” user.
The authors in [4] argue that the arithmetic averaging inherent
to the MOS may severely degrade the performance of QoE
management by leading to unfairness among users, and thus
propose a utility-based averaging of MOS values.



The mapping between QoS and QoE may be utilized
for the purposes of benchmarking different QoE management
algorithms, for monitoring user perceived quality, and finally
for the development of “QoE optimal” management solutions.
From a service provider’s point of view, bounds imposed on
the corresponding costs of optimizing QoE limit the solution
space; e.g., a cost threshold will determine the maximum
available bandwidth of the system (or the number of servers).
Thus, given certain bounds, the objective is to distribute
available resources in a QoE optimal way.

Given a system with multiple simultaneous users accessing
shared resources, the aforementioned objective may be for-
mulated in different ways, such as maximizing the average
QoE, or maximizing the percentage of users rating above a
certain threshold. The literature further advocates the need to
consider ensuring fairness among users. Different approaches
to solving this multi-objective QoE optimization problem may
be considered, such as:

e A two-step approach whereby a solution is found maxi-
mizing average quality, followed by a second step to solve
for maximum fairness while maintaining the previously
determined average quality level.

o A utility approach where the optimization goals (such as
cost minimization, average quality maximization, fairness
maximization) are combined to derive a utility function.

Recent results show that a QoS fair system is not nec-
essarily QoE fair, and have thus used various methods for
calculating QoE fairness [8], [9], [10]. Such methods often
rely on Jain’s fairness index [11] or coefficient of variation
to evaluate systems in terms of QoE fairness. A general QoE
fairness index F' has been defined by HoBfeld et al. [12], which
fulfills some desirable properties that are violated by Jain’s
index or coefficient of variation. For example, F' is independent
of the underlying QoE rating scale which is used to derive a
mapping between QoS and QoE. A system is absolutely QoE
fair (F' = 1) when all users receive the same QoE value. The
most unfair system leads to F' = 0. We note that in this paper
we will adhere to this definition of fairness.

The focus in the remainder of the paper is on investigating
the implications of using different QoE models derived from
various metrics on the QoE management decision, thereby
considering the joint optimization of both quality and fairness.

III. APPROACH

In this section, we describe a general approach for using the
results from subjective tests to estimate different QoE metrics
under a specific QoS condition, as depicted in Figure 1.

A. Statistics from Subjective Tests

Under a specific QoS condition = (e.g., loss rate, loss
pattern, throughput, delay) from a subjective test with &
subjects we get a set of user ratings y = {Yn1s " s Yz ik}

From this we can obtain a QoS-QoE mapping function by
assuming that the mean opinion score MOS, = avg(yz) for
QoS condition z, represents the QoE metrics of interest. For
a set of MOS estimates we can then do a curve fitting to a
smooth QoE function, Qyes,. Similar mappings can be done
for other metrics, e.g., Q0E-QoS mapping of x to a-quantiles
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Fig. 1: QoE metrics from subjective tests and simulated user diversity

in the QoE ratings. Then the c-quantile for x, denoted z, 4,
is the QoE metric of interest, and the mapping function is
denoted Q. , =

B. Modeling User Rating Distributions

The set y  is an empirical user rating distribution for QoS
test condition = over the k subjects. Since k is typically a
small number, instead of using the empirical distribution, the
user rating distribution can be modeled by use of a Truncated
Normal distribution, U ~ N(u,0,L,H), which has been
shown to be valid in [6], with probability density function:

Lo(=t)
(1) — p(ion)

g o

fU(u7{:LL70aL7H}) =

where ¢ and o are expected value and standard deviation in a
Normal distribution, N(u,0?), L and H are lower and upper
limits of U, and ¢ and & are probability density function
and cumulative probability function of a standardised Normal
distribution, N (0, 1), respectively. Thereby, the bounds of the
normal distribution are caused by the bounds of the rating
scale, e.g. 1 (lowest QoE) and 5 (highest QoE) on a typical
5-point scale.

The user rating for condition « is then a random variable
Uy ~ N(uy,0., L, H), where the parameters u, and o, are
determined by:

{u| E[U] = ave(y,)}
{o =sudev(U) | E[U] = avg(y, )}

Mz =
Or =

This means that p, is the p in the distribution of U such
that the expected value of U equals the average value of the
empirical distribution of user ratings. Similarly for o.

The mean value p is the MOS, while the o expresses
the user rating diversity. The SOS hypothesis [3] postulates
thereby that the user diversity can be expressed by a single
parameter a; then SOS is a function of a and the MOS.
[13] derives a relation between this SOS parameter and the
parameter of a truncated normal distribution. Thus, we can
express the user diversity by means of o. This allows us
to simulate different user diversity behaviors by changing o.
Please note that also other models for subject rating behavior
could be used instead [14].



C. QoE Metrics (from U,)

From the modeled user rating random variable, U,, we can
obtain different QoE metrics A of z, denoted Q 4 ,. Examples
of A used in this paper are:

e MOS, = E[U,] - Mean Opinion Score,

o 2oz P(Uy < 24,5) < o : this is the a%-quantile in the
U, distribution’,

e P(U, > 0) - denotes the H-acceptability, i.e., the proba-
bility that the user rating is above a certain threshold,

e GoB, = P(U, > 4) - the probability of a rating that is
Good or Better on a 5-point rating scale’.

Which QoE metric to use depends on what the operator
considers to be most important, the average user, the most
critical ones, the majority that are sensitive to changes in the
delivered quality? Let us assume a user % is given resources ;.
What is that users’ QoE? If we assume this is an average user,
we could estimate QoE using the MOS metric. On the other
hand, if we assume this is a “critical” user, we could use the
10%-quantile. We now take a second look at the QoE metrics
defined above to better understand their meaning when using
them in the context of QoE management:

e The average user’s opinion is most important: using
MOS, quantifies QoE for QoS x for the average user.

e The most critical users’ opinion are most important: e.g.,
10% most critical, use zp.10,4-

e The majority of users is most important, excluding those
who are insensitive to quality changes, e.g., exclude 10%
of the most happy but ignorant users, use 29.90,z-

e The majority of users should be happy: use GoB, or -
acceptability. What majority means (probability thresh-
old) and what happy means (4 or more general, /) must
be defined by the provider / operator.

D. Average QoE and QoE Fairness Among Users

For certain QoE metrics we can define the average over
the users, and the fairness among them. Let @ 4 ., be the QoE
function for a specific QoE metric A under resource allocation
x = {x1, - ,xx}, where x; is the resources allocated to user
i, (i=1,--- k). Then we obtain for QoE metric A:

Q Az = % Zle Q Az, Average QoE metric over k users

Fagz=1-2742

QOoE fairness over k users [12]

The QoE management decision aims at obtaining the opti-
mal resource allocation x, over the k£ users which maximises
the average QoE and QoE fairness in @, i.e., the QoE metric
A for resource allocation z over the k users. See Figure 2 for
an illustration.

IV. NUMERICAL RESULTS: RESOURCE ASSIGNMENT FOR
Two VIDEO USERS

We illustrate the impact of the different aforementioned
QoE metrics on the user-centric evaluation of a concrete
resource assignment. We assume an operator has some shared,
but constrained resources (such as network bandwidth) which

'We use Q10 and Q90 for the 10%- and 90%-quantile.
2f-acceptability with § = 4

optimal resource
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T <. ... resources allocated
I to k users,

Objective: :
optimize resource allocation 2
wrt maximium average QoE ¢
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for specific metric
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(from Figure 1) A
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Fig. 2: QoE management maximises the resource allocation . Choos-
ing different metrics for quality estimation (Qa ) corresponds to
optimizing the system for different types of users (avg. users, critical
users, etc.) and thus leads to different optimal resource allocations.

are to be allocated to the users in the system (no over-
provisioning).

The goal of the operator is in a first step to maximize the
QoE per user and in a second step to provide QoE fairness
across the users, cf. Section II. To this end, the operator relies
on a QoE model which is fed with objectively measurable QoS
parameters. The operator has thereby different options how to
consider the users in the system, as discussed in Section III-C.

A. Two Users Scenario: Optimal QoE Resource Assignment

For illustration purposes, we consider the simplest scenario
consisting of two users only. We argue that this scenario is,
however, sufficient to demonstrate without loss of generality
the impact of the QoE metrics and the operator’s dilemma on
how to assign resources to the users.

We consider HTTP adaptive streaming (HAS) as an exam-
ple application. We use a simple QoE model from [15], derived
from subjective experiments. The model maps the average
HAS video quality layer (equivalent to the time on the highest
layer) to QoE. Given that only MOS values are derived, we
model the user rating distribution for a test condition with
a truncated normal distribution so as to explore the potential
impact of different user diversities, see Section III-B.

We must emphasize that the approach used here for sim-
ulating user diversities is supported by the literature [6]. It is
based on real subjective data, and has been shown to lead to
very good approximations. Furthermore, we highlight that the
approach used to obtain different QoE metrics is irrelevant for
our conclusions. Any set of realistic QoE models (e.g. based
on objective metrics like PESQ or PSNR) could be substituted
here to demonstrate the effects of choosing different metrics.

1) QoS-QoFE Mapping Function for HAS: The simple QoS-
MOS mapping function provided in [15] is an exponential
function taking the relative time spent on the highest quality
representation into a MOS value. To be more precise, only two
video layers are considered in the subjective experiments (high
quality V' = 2 and low quality V' = 1) and the relative time on
the highest quality layer is equal to the average video quality.
In the considered scenario in this paper, we also consider two
layers which allows to use the experimentally derived QoS-
MOS mapping from [15].

Based on the user rating model described in Section III-B,
we can numerically derive additional QoE metrics such as
quantiles and GoB for a certain test condition. Thereby, the
test condition leads to an average video quality which we use
in the result figures. We use Matlab’s Piecewise Cubic Hermite
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Fig. 3: QoS-QoE mapping — Matlab’s Piecewise Cubic Hermite In-
terpolating Polynomial (PCHIP) is used to fit the curves numerically.

Interpolating Polynomial (PCHIP) to fit the curves numerically.
Thus, we get as QoE metrics: MOS, quantiles, and GoB as
functions of the average video quality = (Figure 3). We see that
more sensitive metrics such as 10%-quantile (denoted as Q10)
and GoB portray a stronger decay of the QoS-QoE mapping
function. We also note that GoB corresponds to the ratio of
f-satisfied customers. We keep the user diversity fixed (i.e.,
a certain o) to the value which is derived from subjective
studies in [6]. However, we can also simulate other user
behavior by changing oy, which leads to a different set of
QoE metrics, e.g., for the MOS f,, (z). We see the strongest
impact of the user diversity on the GoB and Q10 curves (while
clearly there is no impact on the MOS curve since diversity is
averaged out). Please note that we use normalized QoE values
with 1 indicating highest QoE and 0 indicating lowest QoE.

2) System Description: In the scenario considered, there
are two users sharing network resources (a total capacity of
C). The capacity is sufficient to serve one user with high
quality (V = 2) and one user with low quality (V = 1) at
the same time, but not sufficient enough to provide both users
high quality. A simple QoE management solution would be to
give both users low quality. This leads to a fair system, but
the average QOoE is not maximized.

We consider a better QoE management scheme which
always utilizes the existing capacity completely. As a result,
user 1 gets high quality with probability p. A video of length
t is played in high quality for time ¢p for user 1. Accordingly,
user 2 watches the video in high quality with probability
1 — p. Thus, the resource management problem is reduced to
determining which value of p is appropriate according to the
operator’s goals. From a QoS perspective (i.e. video quality),
it does not matter how to assign p. The average video quality
(over both users) is 1.5 (independent of p).

QOE value

ratio p

Fig. 4: Value of the selected QoE metric for ony = 0.40 and varying
QoE management decisions (p). Solid lines represent the QoE value
for user 1 for those QoE metrics; dashed lines represent user 2.

e Video quality of user 1: V; =2p + 1(1 — p)
e Video quality of user 2: Vo =2(1 —p) + 1p
e Average video quality: V = (V1+V2)/2=1.5

Thus, an optimal solution would be p = 0.5 which is QoS
fair and leads to optimal QoS. However, QoS # QoFE, and
due to the non-linear relation between QoS and QoE, it is not
clear what is a QoE optimal value of p. We discuss this with
concrete numbers in the next sections.

B. Results: Average QoE per User

Figure 4 shows the value of the selected QoE metric
for the two users; solid and dashed lines represent QoE for
user 1 and 2, respectively. The ratio p (indicating the QoE
management decision) is varied and different QoE metrics are
considered. We exemplarily show the results for high user
diversity (o = 0.40). Figure 5 shows the average value of the
selected QoE metric over both users. We see that the average
QoE (in contrast to average QoS), depends on the resource
assignment.

Now, let’s take a closer look at the different QoE metrics.
Critical users (10%-quantiles) will lead to lower QoE values
than average users (MOS) or insensitive users (90%-quantiles).
Thus, the selected QoE metric significantly changes how the
operator sees the overall QoE in the system. The numerical
results show how significant the changes can be. As expected,
absolute QoE values are very different. We further see that
the GoB is also a very sensitive QoE measure and allows the
operator to clearly discriminate “bad” configurations.

We also note that user diversity has the strongest influence
on GoB, followed by Q10. The higher the user diversity, the
lower the Q10 curve (as a consequence of the mapping func-
tion). The Q90 curve is only slightly affected. Nevertheless,
for Q90, the optimal resource assignment changes according
to the user diversity (which is not the case for the other QoE
metrics).

We observe that the optimal resource assignment p (which
is determined by the maximum of the average QoE value) is
achieved if we simply serve one user with the highest quality
(except for Q90), i.e., p = 0 or p = 1! However, this clearly
leads to unfairness.

C. Results: Fairness per User

In addition to average QoE, we compute the standard
deviation over the QoE values and derive the QoE fairness
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Fig. 6: QoE fairness of the system when using different QoE metrics
in dependence of the QoE management decision p for o = 0.4.

index F,, as shown in Figure 6. Thereby, ' = 1 means a
perfectly fair system, while F' = 0 describes the unfairest
system [12]. Clearly, optimal fairness is achieved for p=0.5,
where both users get the same quality — independent of the
used QoE metric. However, we see strong differences between
the selected QoE metrics if we assign one user 100% high
quality and the other only low quality (i.e., p=0). This may
lead to a completely unfair system (F' = 0) when considering
GoB or Q10, or a moderately fair system (with F' around 0.5)
when considering MOS or Q90. We observe also an overlap
in the curves for a range of p from approx. 0.4 to 0.6. Thus,
the interpretation of the resource assignment for an operator
strongly depends on the used QoE metric. An operator has
to decide the QoE metric for estimating average QoE and
fairness. This reflects the operator’s decision with regards to
which user population to focus on: average users (reflected
by using MOS as the QoE metric), critical users (using Q10),
0-satisfied users (using GoB).
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Fig. 7: QoE management trade-off: average value of chosen QoE
metric vs. QoE fairness depending on the resource assignment p, the
selected QoE metric and the user diversity o .

Figure 7 depicts the trade-off between fairness and average
QoE (depending on the assignment p). It combines the results
from Figure 5 and Figure 6. Except for Q90, a higher average
QoE decreases QoE fairness. Clearly, it remains up to an
operator to determine the relative importance of fairness as
compared to quality. In the case of Q90, the trade-off changes
with a higher user diversity, and a clear optimum exists at
p=0.5. Moreover, for low user diversity (0=0.16), the average
Q90 is almost independent of p (only fairness is affected).

D. Results: Maximum Utility

A straightforward approach to combine average QoE Q 4
and fairness F4 into a single utility value U4 is as follows. A
relevance factor p indicates the importance of fairness in the
management decision. A indicates the selected QoE metric.

Ua=(1—-p)Qa+pFa

The goal of the operator is then to maximize the utility (based
on the decision of p). Figure 8 plots the optimal value of
p (leading to maximum utility) depending on the fairness
relevance p for the different QoE metrics.

The main observation is as follows. For Q90, using QoE
fairness or overall QoE will give the same optimal solution.
For the other three metrics there is a certain threshold, i.e.,
there are clear “break-even” points (optimal trade off between
average QoE and QoE fairness) - these depend on the metric.
Depending on p, the QoE metrics lead the operator to either
p =0 or p = 0.5. Different values than p = 0,0.5 are caused
by numerical inaccuracies (due to the numerical fitting of the
QoS-QoE mapping functions). However, the critical point is
at which “break-even” points the assignment changes. Those
critical points change depending on the QoE metric.
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Q90 considers insensitive users which will always lead to
higher QoE values (see average QoE for p=0, in Figure 5).
Thus, the utility value is mainly determined by the fairness.
Q10 and GoB focus more on maximizing average QoE (due
to the stronger decay of the QoS-QoE mapping function in
Figure 3) at the cost of fairness. Thus, only a higher fairness
relevance p will change the assignment (from p = 0 to p =
0.5). MOS lies in-between Q90 and Q10, but does not allow to
differentiate user diversity! We observe the same break-even
point independent of the user diversity o. On the other hand,
we see that user diversity changes the ordering of the break-
even point for Q10 and GoB.

Depending on the QoE metric, we can obtain significantly
different conclusions for the operator with respect to which p
value to use.

V. CONCLUSIONS AND FUTURE WORK

QoE management mechanisms deployed either at the
network or application layers inherently rely on underlying
mapping functions between QoS and QoE when optimizing
the system. Using an illustrative numerical example, we have
shown that choosing different metrics for quality estimation
corresponds to optimizing the system for different types of
users (average users, critical users, etc.). We provide novel
insights into how this in turn leads to different QoE man-
agement outcomes, such as optimal and QoE-fair resource
allocations. Ultimately, the decision of which metrics to use
may depend on the market situation and target user category,
e.g., operators/providers focused on meeting the requirements
of “innovative/early adopters” (potentially for marketing rea-
sons) may choose a conservative approach and apply the Q10
or GoB metrics, whereas operators focused on meeting the
requirements of “followers/laggers” may opt to use the Q90
metric. Deciding for a “majority” approach may lead to the
decision to use the MOS metric.

A simple example is sufficient to derive the key observa-
tions and conclusions. Larger scenarios with more users, more
complex user rating models, or other underlying subjective
user ratings used to derive the QoE metrics will lead to the
same observations.

A further important contribution of the paper is the analysis
of the implications of different user score diversities on the
QoE management outcome when applying different metrics.

Previous studies have shown that for certain services, ratings
are found to be more diverse than for others (e.g., scores are
less diverse when rating impaired videos as opposed to Web
page loading times [6]). While using MOS averages out user
diversity, the most significant impact of diversity is reflected
in GoB and Q10 curves.

In addition to understanding the meaning of using different
QoE metrics for QoE management, another research question
is related to how to formulate the actual QoE optimization
problem with respect to multiple objectives such as quality,
fairness, and costs. In future work, we plan to further inves-
tigate the impacts of different metrics and QoE optimization
formulations on QoE management outcomes both at a theoret-
ical and practical level.
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