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Abstract—When dealing with Quality of Experience (QoE)
and in particular perceptual quality assessment and modeling,
averaging is a common occurrence. For instance, the most
commonly used measure of QoE is the aptly-called Mean Opinion
Score (MOS), which is intended to represent an idealized average
subject’s rating of the quality. Another form of averaging
occurs when choosing and preparing the samples used for
the assessment, which are supposed to be representative of an
average viewing situation. This leads to nice, smooth scalar
representations of quality, but at the same time, it leads to a loss of
information. In this paper we present a first step towards working
with all the information available in an explicit way, rather
than averaging it away. We do so in the context of constructing
layered quality models for HTTP video streaming (using Dynamic
Adaptive HTTP Streaming — DASH, excluding its adaptation
feature at this stage), mapping network-level QoS measurements
to probability distributions of different MOS values for a given
set of conditions.

Index Terms—QoS, QoE, HTTP Video, DASH

I. INTRODUCTION AND RELATED WORK

The Mean Opinion Score (MOS), and its variations (DMOS,
etc.) have been the de-facto, go-to measure for quality as-
sessment and modeling for a long time. It provides a neat,
simple way to deal with quality estimates, by giving an easy
to understand scalar value to quality. More recently, however,
the limitations of dealing with averages in this context have
become clear (1; 2). While in the field of quality estimation the
use of averages continues to be dominant, in some other do-
mains the use of distributions as a prediction outcome has been
considered. In (3), Zhao et al. propose a method for predicting
probability distribution of image emotions in Valence-Arousal
space. Tian et al. present a method for predicting travel time
distributions in the field of transportation research(4).

In this work we look at the behavior of DASH video
streams, in the absence of adaptation, and in particular, how
the presence of losses in the network can lead to different
playout behaviors, and therefore different quality ratings. Our
previous work (5) proposed a layered model for DASH streams
which maps network QoS values to perceptual quality by first
estimating the number and duration of the stall events that will
happen during playback, and then producing a MOS estimate
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from those. Similar stall-to-quality models can be found in the
literature, and a good overview of them can be found in (6).

The proposed layered model works well, but it has two
inherent limitations. Firstly, the output is a MOS estimate,
thereby not allowing a host of potentially useful applications
for service providers (e.g., for determining the ratios of satis-
fied to unsatisfied users under a given condition). Secondly, the
models mapping the QoS metrics to playout behavior, that is,
to the expected number of stalls and their expected duration,
deal with averages, whereas in practice there can be non-trivial
(with respect to the observed quality) variations in those two
values.

This paper presents our currently on-going work towards
developing new quality models able to estimate the probability
distributions of quality assessments from the observed network
and application conditions. At this stage, we are able to
predict the distribution of MOS values, by first obtaining
the distributions for number of stalls and their duration, and
then applying the quality model developed in (5). The results
obtained so far are by no means perfect, but indeed promising,
and they provide a stepping-stone towards a fully probabilistic
view of quality, which would be of significant interest for
content and network providers, as it would allow e.g., to
predict how many users might complain about poor quality,
or eventually churn. The separation of concerns provided by
the layered approach taken (7) also allows the re-use of the
models obtained in different contexts.

The rest of the paper is organized as follows. In Section II,
we describe how we model the playback behavior from
network QoS and basic information about the stream and the
player. Section II-A describes the experiments carried out in
this work. Sections II-B and III describe the model created
and its performance. We conclude the paper and discuss future
work in Section IV.

II. FROM NETWORK QOS TO PLAYBACK BEHAVIOUR

The performance of video streaming over HTTP depends
on a variety of factors, of which some make modeling said
performance difficult. In terms of quality, the main aspects
to consider are related to the number of stalls during the
playback, and their duration (the other obvious factor, start-
up time, has been shown (8) to have only a minor impact
on the perceived quality of the playback, and is therefore



TABLE I: Streamed content and average bit rates (60s clips)

Content Average bit rate (Mbps)
Need for Speed 8.05
Stalingrad 8.17
Toy Story 3 8.06
Transformers — Age of Extinction  9.00

TABLE II: Network parameter values

Parameter Values

Bandwidth (Mbps) 6, 8,9, 10, 15

Loss Rate — LR (%) 0,1,5,75, 10, 12,5, 15
Mean Loss Burst Size — MLBS (packets) 1, 1.25, 1.5

not considered here). These, in turn depend on the player’s
buffer size, buffering strategy, the segment size used, and of
course, the video bit rate and the network performance. Other
aspects, such as DASH quality adaptation strategies also have
an impact on the way network QoS affects the video playout.
For simplicity’s sake, we did not consider adaptation at this
stage, as it was not clear when starting out whether modeling
even the simpler, non-adaptive case was feasible.

A. Experiment Design

The experiment data was collected on a testbed comprising
three computers running Linux (Ubuntu 14.04 LTS), connected
by an isolated 1Gbps Ethernet network. One of the hosts runs
the Nginx HTTP server, providing the content in DASH format
to another host . In between these hosts, sits a third host
providing a layer-2 bridge and emulation for different network
conditions, via NetEm.

The measurement experiment was conducted by streaming
different contents (four source sequences, encoded at between
8 and 9Mbps, cf. Table I) over the emulated network, to an in-
house developed tool (dashsimu) that does DASH streaming
without rendering the video.

For the network emulation, we introduced losses, using
NetEm’s built-in simplified Gilbert model, and limited the
bandwidth of the link. The segment size and the buffer size
were fixed at 2s. The network parameters were varied as shown
in Table II. As can be expected by the choice of representations
and rate limits, the resulting playouts ranged from very smooth
to extremely impaired.

A total of 10471 streaming sessions (covering each parame-
ter and content configuration multiple times, each playing back
60s of video) were carried out sequentially during the exper-
iment. The process was scripted, and for each condition, the
script set up the network emulation, configured the streaming
application, ran it, and afterwards collected the results.

A second, independent experiment was run for validation
of the model created. The validation experiment covered 400
sessions with conditions set up with the parameter values
described in Table III

B. Modeling

The goal of this work was to provide estimates for the
distributions of the number of stalls and their duration, with

TABLE III: Network parameter values for the validation experiment

Parameter Values
Bandwidth (Mbps) 8, 12

LR (%) 0,3,8, 12
MLBS (packets) 1,13

TABLE IV: Kullback-Leibler divergence summary for the number of stalls
distribution estimations (only non-infinite values)

Min.
0.01181

1st Qu.
0.06342

Median
0.09561

Max.
0.51870

Mean

0.19770

3rd Qu.
0.32130

a one-minute playback window. To this end, we collected
the playout statistics for all the streaming sessions from the
dashsimu tool. With those, we created histograms, which we
then used as training data for our models. For the number of
stalls, we binned the data for each integer between 0 and 9,
with an extra bin for all values > 9. In practice, given the
results obtained in previous campaigns, values higher than 3
or 4 stalls in a minute are assessed as unacceptable by users,
and hence are not particularly interesting.

For the total stall duration, we binned the data in 5-second
intervals, with a total of 19 bins considered (as in the number
of stalls case, this provides a far larger range than is needed
in practice, as stalls that long lead to session abandon in most
cases), the last one covering all larger values.

We used simple 3-layer feed-forward neural nets (imple-
mented with R’s neuralnet package) for training. We also
tried more complex NN architectures, but they did not offer
any meaningful improvement over a 3-layer one. The training
was carried out in a ten-fold cross-validation fashion, doing
random splits (90% training, 10% verification) of the experi-
mental data. All the performance results presented in the next
section correspond to conditions observed during the separate
validation experiment, of which the data was not used during
training.

III. RESULTS

The resulting models for the number of stalls and their
duration were tested against the data from the validation
experiment described above. Visually, the resulting histograms
appear to be, in most cases, a good approximation of those
observed in practice, but in order to quantify their closeness,
we computed Kullback-Leibler divergence on them. For the
number of stalls, we found that out of the sixteen valida-
tion conditions, two of them had an infinite value for K-L
divergence (i.e., the predicted distribution did not resemble
the original), whereas the remaining fourteen had low K-L
values (cf. Table IV). The two failed cases corresponded to
the same combination of LR and bandwidth values (3% and
8Mbps, respectively).

For the stall duration, all K-L divergence values were
bounded, and slightly higher than those of the number of stalls,
but still show that the predicted distributions are close to the
original ones. The results are summarized in Table V.



TABLE V: Kullback-Leibler divergence summary for the stall duration
distribution estimations

Min.
0.0274

Ist Qu.
0.1209

Median
0.1889

Max.
1.4230

Mean

0.3510

3rd Qu.
0.3248

Going over the ten-fold cross-validation data, we found
comparable results for both models. Roughly 13% of the cases
showed an infinite K-L divergence value, while mostly still
showing a significant overlap in the modes of the distributions,
whereas the rest of the cases show that the predicted distribu-
tions are indeed similar to the observed ones. Figures 1 and 2
show the predicted and observed distributions for good (low K-
L divergence) and bad (high K-L divergence) performing cases
of the number of stalls and total stall duration distribution
estimations, respectively. for a case with low K-L divergence
value (0.02, for a condition with LR=15%, MLBS=1.5 packets
and bandwidth of 9Mbps), and another with an infinite K-L
divergence value (for a condition with LR=1%, MLBS=1.5
packets, and bandwidth of 9Mbps). We could not discern
any obvious commonalities in the conditions where the K-
L divergence goes to infinite, so the causes for this remain to
be understood as of this writing.
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(a) Observed and predicted distributions for the number of stalls, low
K-L divergence (0.03)
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Fig. 1: Performance of the distribution prediction for the number of stalls,
(a) good fit (LR=15 %,MLBS=1.25, BW=9Mbps, K-L divergence = 0.03)
and (b) bad fit (LR=7.5%, MLBS=1.5, BW=8Mbps, infinite K-L divergence)
examples.

At any rate, the results obtained seem promising, in that we
can successfully estimate the distributions for the number of
stalls and their duration in at least ~ 87% of the cases. With
these values, and the HTTP video quality model from (5) (or
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(b) Observed and predicted number distributions for total stall time,
high K-L divergence (1.54)

Fig. 2: Performance of the distribution prediction for the total stalling time,
(a) good fit (LR=0%, BW=6Mbps, K-L divergence = 0.03) and (b) bad fit
(LR=12.5%, MLBS=1.5, BW=15Mbps, K-L divergence = 1.54) examples.

any other such model from the literature), it is possible to
determine the distribution of MOS values from the estimated
joint probability distribution for the number of stalls and their
duration.

The models allow operators and service providers to bet-
ter understand how the streaming behaves as a function of
network QoS. In terms of perceived quality, layering the
distribution models with the quality model from (5) allows
us to predict the distribution of MOS values, and to relate
the expected playout behavior with the perceived quality, as
shown in Figure 3. While there is a conceptual difference (and
practical shortcoming) between predicting a distribution for
MOS values and actual ratings, the results show that this is
a viable way towards the latter. The layering of models used
here and proposed in (5) is reliable, and given a QoE model
able to predict rating distributions (or at least quantiles), the
layered model would provide an accurate probabilistic view
of QoE.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a simple probabilistic view
of HTTP video quality in terms of network performance. We
do so by estimating, given a set of network conditions, the
expected distributions for the number of stalls occurring during
playback, and their duration. We then use a layered approach
to estimating the perceived quality, by using a simple model
that maps the predicted playout behavior to quality estimates,
in the form of MOS. This leads to predicting the distribution of
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Fig. 3: Estimation of MOS distributions. Density plot for number of stalls and
their duration, overlaid with MOS contours, and MOS histogram (LR=8%,
MLBS=1.3, BW=8Mbps)

MOS values for the network conditions considered. This type
of approach allows content and network providers to better
understand the levels of user satisfaction in their user base, by
exploiting more of the information available, instead of simply
averaging it away.

The ultimate goal of this approach is to give operators
and service providers a holistic view of service quality, by
providing them with an estimation of the expected user ratings.
This allows them to adjust their operations to reach whatever
satisfaction objectives are required by their business (e.g.,
95% of users should have good or better ratings), within their
budget capabilities. In practice, this requires suitable network
QoS monitoring to be deployed, and depending on the actors
involved, it may also require cooperation (e.g., between ISP
and OTT providers).

The work, in its current form shows that this type of
approach is feasible, but it has two important limitations. The
first of these is the lack of adaptation in the DASH streams
(and its impact on the network behaviour). This is the subject
of on-going work. The second one is that for a small fraction

(~ 13%) of cases the prediction is still poor. We believe this
can be addressed with larger data sets.

The first one is that it predicts a distribution of possible
MOS values, whereas the ultimate goal is to predict the dis-
tribution of user ratings. The solution for this requires having
a sufficiently large number of user ratings, so as to be able to
estimate their distribution with sufficient accuracy. This will
require some large-scale (most likely crowdsourced) study, as
laboratory-scale studies are not sufficient for this purpose.
Secondly, there is a fraction (roughly 13%) of seemingly
unrelated cases where the performance of the prediction is
still poor. The vast majority of the cases, however, produce
very accurate results, which is promising. We believe that this
can be solved by applying more advanced ML techniques, in
particular ones that allow to express the relationship between
each of the outputs, which the simple neural net used herein
does not allow for. Finally, both models considered here do
not take adaptation into account. This is being addressed as
of this writing.
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