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Abstract

For several years now, the ITU-T’s Perceptual
Evaluation of Speech Quality (PESQ [1]) has
been the reference for objective speech quality
assessment. It is widely deployed in commercial
QoE measurement products, and it has been well
studied in the literature. While PESQ does pro-
vide reasonably good correlation with subjective
scores for VoIP applications, the algorithm it-
self is not usable in a real–time context, since it
requires a reference signal, which is usually not
available in normal conditions. In this paper we
provide an alternative technique for estimating
PESQ scores in a single–sided fashion, based on
the PSQA technique [2].

1 Introduction

For several years now, the ITU-T’s Perceptual
Evaluation of Speech Quality (PESQ [1]) has
been the reference for objective speech quality
assessment. It is widely deployed in commercial
QoE measurement products, and it has been
well studied in the literature.

In previous work [3], we have studied the per-
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formance of PESQ for VoIP over a wide range of
network conditions, and found that

1. the correlation with subjective scores was
good, even for cases in which losses were
relatively abundant and bursty (but still
within reasonable limits, see [4, 5] for some
limitations of PESQ with respect to network
impairments), and

2. PESQ scores were fairly consistent for all
combinations of speech samples and loss
patterns.

These results lead to thinking that a good
approximation of PESQ can be achieved at
the receiving terminal as long as network
performance can be measured and some
application–level knowledge (such as the codec
in use, the presence or absence of loss con-
cealment, etc.) is available. In the past we
have advocated the use of Pseudo–Subjective
Quality Assessment (PSQA [6]) for VoIP QoE
estimations, which allows for very accurate
estimations of MOS values based on network
and application parameters. In this paper we
analyze the applicability of the PSQA approach
to the estimation of PESQ scores.

In principle, given that both PESQ and PSQA



correlate very well with subjective perception, it
is expected that the approach presented herein
will lead to a hybrid approach offering the best
of both worlds. On the one hand, using PESQ
as a target function eliminates the costly part
of PSQA, namely the need to perform a non–
trivial subjective LQ assessment campaign. On
the other hand, it allows to have these results
in real–time, without the need for a reference
signal. This enables the use of these PESQ-like
results in situations in which some quick reac-
tion is desirable, for instance in order to improve
the perceived quality by means of real–time con-
trolling actions on the communication system
whose delivered QoE is automatically assessed,
one of the main goals behind our research efforts.

The paper is organized as follows. In Section 2
we describe the experiments realized and their
motivation. Section 3 presents the results ob-
tained. We conclude the paper in Section 4.

2 Methodology

2.1 Motivation

Our previous work on PSQA is based on a rather
simple concept, to wit: the quality of a media
stream (be it voice or video), as perceived by
an average user, and assuming no extraneous,
non-measurable degradations at the source (such
as faulty equipment) is usually determined by a
number of factors that can be divided in two
categories. These categories are

Application–related factors, such as the en-
coding used, the type of error correction and
concealment chosen, play-out buffer sizes,
etc.

Network–related factors, such as the loss

rate in the network, delay, jitter, etc.

These premises, coupled with the fact that
PSQA provides very good correlation with
subjective scores, imply a certain independence
of the perceived quality from the actual media
streamed (there are of course some limitations
to this claim, especially concerning video,
mostly related to scene types and amount of
motion, but those can be measured and hence
considered as an application–level factor).

In turn, the previous observation leads to
the prediction that for VoIP, the scores given
by reference–based tools such as PESQ should
be quite consistent for a given configuration of
application and network factors or parameters.
This was the subject of our work in [3]. The
results from that study show that PESQ scores
taken for a single encoding and over consistent
network conditions are remarkably stable. So
much so, that for a given configuration of
parameters (in the case of the previous study, a
given codec, whether PLC was in use and the
loss rate and loss distribution in the network) a
fairly good prediction of the PESQ-LQ values
could be given by taking the median of a
series of PESQ-LQ assessments taken over
similar configurations. For reasonable network
conditions (i.e. conditions that do not degrade
the VoIP stream’s quality badly enough to
break PESQ’s assessment), the median–based
estimations are very close to actual PESQ scores.

Using this approach in practice, however, has
some limitations. Firstly, it requires a rather
large number of assessments to be performed in
order to acquire enough information to reliably
cover the parameter space. This, in itself is not



a serious issue if the parameters considered are
not too numerous, but it is an area that could be
improved. The second issue is more important,
since it may actually limit the applicability of
the approach. This issue is the lack of general-
ization and hence the inability to extrapolate
for parameter values not present in the original
measurements. While this could be palliated
by a brute–force approach (i.e. cover a larger
parameter space, in a more fine–grained fashion
if needed), this is not an elegant solution, and it
basically doesn’t solve the issue, but only masks
it.

PSQA, on the other hand, relies upon the
ability of the Neural Network (NN) it uses as
a learning tool in order to reduce the number
of samples required to reliably cover the whole
parameter space. This is important since PSQA
is usually trained with subjective scores, which
are expensive and time–consuming to obtain.
The NN’s ability to generalize, coupled with
PESQ’s regularity over similar application and
network configurations hint at the feasibility of
obtaining a flexible, cheap and accurate way of
single–sidedly estimating PESQ scores by using
PSQA.

2.2 Experimental Setup

The experimental setup used for this study
is very similar to the one used for [3]. We
used G.711 encoding, with and without loss
concealment, and considered the loss rate and
distribution in the network as our network
parameters. While jitter is a relevant parameter
for LQ, it can be folded into the loss rate if
no particular attention is being payed to the
dejittering buffer sizes and algorithms. Hence,

it is not considered explicitly in this study.

The network loss model used is a simplified
Gilbert model [7] in which the lossy–state loss
probability is 1 (i.e. all packets are lost in the
lossy state). This model has the advantage of
eliminating one free variable, and it provides a
reasonably good model of losses on the Internet.

The network impairments are thus repre-
sented not only by the packet loss rate (LR), but
also by the dispersion of losses in the stream,
captured by the mean loss burst size (MLBS) [2].
The MLBS is the expected number of consecu-
tive losses in a loss episode, that is, the mean
length of loss bursts in the flow, a real number
≥ 1. We considered loss rates between 1% and
30%, more specifically values 1%, 2%, 3%, ...,
30%, and mean loss burst sizes of up to 6
consecutive packets (values 1, 1.25, 1.5, 1.75, 2,
2.5, 3, 3.5, 4, 5, 6). Given that standard–length
(approximately 10s) samples were used, it was
not possible to have all possible combinations of
LR and MLBS, since some of them are not really
feasible within the ∼ 400 packets that each
speech sample uses when transmitted. Thus,
only valid combinations were considered, and
for those, each loss trace created was verified to
ensure that it had the desired characteristics.

It should also be noted that PESQ is not
expected to behave correctly with respect to
subjective scores when the network impairments
are too high. In any case, since the goal of the
study was to mimic PESQ’s performance, we
anyway considered very impaired networks.

For each combination of values of the two
loss-related parameters LR and MLBS, 10
different traces (all statistically similar) and 20



standard speech samples (50% male and 50%
female) were used1. The number of samples
generated and then evaluated with PESQ was
slightly above 128500. For each combination of
LR, MLBS and packet loss concealment (PLC,
either active, coded PLC = 1, or not, coded PLC
= 0) several sequences were analyzed (around
200 of them, except in some cases with high
loss rates, where more samples were generated
and used). In other words, we sent each one
of the error-free voice sequences through a
simulated/emulated network varying the three
considered variables, and we used PESQ to
evaluate the resulting quality. Since with every
considered triple of values for LR, MLBS, PLC
(we call a configuration such a triple [6]) we
had many different associated PESQ values, we
generated a second smaller table having around
600 entries, each corresponding to a different
configuration of our platform. Again, in this
table, each considered configuration (a loss
rate, a value for the mean loss burst size, and
the indicator of packet concealment active or
inactive), there is one row in this new table.

For each of the entries (configurations) of the
compact table, we evaluated statistical descrip-
tors of the set of PESQ values associated with,
such as the empirical mean, median, variance,
etc. As in [3], the median was a good approx-
imation of PESQ scores. We therefore used it
to train a Neural Network using the AMORE
package for the R statistical analysis language.
That is, we built a function f mapping each
possible configuration into a quality value in the
interval [1, 5] (actually, given that the target

1For some configurations in the higher–end of the im-

pairment values we actually used more samples, in order

to mitigate the variability of PESQ’s results.

function is PESQ, the interval will be [1, 4.5]),
that approximates the median of the values
obtained using PESQ. Function f is defined in
the space [1, 30] × [1, 6] × {0, 1}, corresponding
to LR in %, MLBS and PLC. This function
f is our approximation tool for PESQ, whose
behavior is analyzed in next Section.

3 Results

The learning phase consisted of using a standard
Neural Network (NN) for learning the mapping
from configurations to (median) PESQ values.
This was also partly done in the context of
a larger study comparing the performance of
the AMORE–based NNs against the Random
Neural Networks (RNN) we have used previ-
ously. This comparison work is still ongoing at
the time of writing. Some preliminary results
were published in [8]; for the tool itself and its
use in the PSQA approach, see [9]. Any of the
numerous good references on Neural Network
methodology can provide background material
to the reader if this is necessary; for a classic
one, see [10].

For training the NN, we randomly (and
uniformly) separated the data in the small
compacted table into two parts, corresponding
to a 80%–20% decomposition for training
and validation respectively. Since we have a
binary variable PLC in the configurations, we
actually built 2 NN, that is, two functions,
f0 corresponding to the case PLC= 0, and f1

for the case of PLC= 1. This proved to be a
better solution in this case than having a sin-
gle NN with the PLC considered as a third input.



We used the usual 3-layer feed-forward
perceptron structure with two inputs (LR and
MLBS) and one output (estimated, or predicted
PESQ value). For the hidden layer, we varied
the number of neurons starting from 1, in order
to select the best architecture for our neural
networks. We finally chose an architecture
with 30 hidden neurons for both f0 and f1. As
stated before, the whole data set for learning
(coming from the small table) has around 600
entries, half corresponding to the case PLC= 0
and half for the case PLC= 1.

Let us denote by T S, i the set of configurations
corresponding to the 80% used for training the
fi network, the Training Set for the case PLC
= i, with cardinality KT S,i, and by VS, i the
similar set of configurations corresponding to the
20% used for validation (the Validation Set when
PLC = i), with cardinality KVS,i. The Training
Error when PLC = i, i = 0 or 1, is then

(KT S,i)
−1

∑

all config.γ∈T S,i

[

fi(γ)−MedianOfPESQ(γ)
]2

,

and the Validation Error is

(KT V,i)
−1

∑

all config.γ∈VS,i

[

fi(γ) − MedianOfPESQ(γ)
]2

.

In both expressions, we call configuration (de-
noted by γ) just the pair (LR,MLBS), since we
separated the data into two sets thus eliminating
the need for a third variable PLC. For each such
γ, MedianOfPESQ(γ) is the value obtained from
the analysis of the original table having fixed
PLC to 0 or to 1, according to the case we are
analyzing, for instance, the number defined by

argminxK−1
∑

all config. γ

∣

∣PESQ(γ) − x
∣

∣

if K is the size of the small table (around 600
in our experiments). Table 1 provides some data
for this step of the analysis. Given the fact that
we are using PESQ values in the range [1,5], the
reached error levels are indeed extremely small.

Table 1: Performances of the learning phase, for
the two selected Neural Networks f0 and f1

neural training validation
network error error

f0 0.064 0.069
f1 0.040 0.042

Figure 1 shows, on the left, PESQ values
and on the right, the predictions provided by
the Neural Network, everything for PLC = 0
(no Packet Loss Concealment). In the x-axis
we put LR values. Each point in the graphs
corresponds to a configuration (LR,MLBS,0).
Different points on the same vertical line, that
is, with same LR, correspond to configuration
with same LR but varying MLBS. It is in-
teresting to see that the PESQ plot shows a
significant amount of dispersion compared to
the estimation when the loss rate goes over 10 to
15%. This is due to the NN being trained with
median values, which significantly suppress the
impact of outlier values in the data set. It is also
known that PESQ tends to behave in a more
variable way when the network impairments
become large, and this behavior is exacerbated
in this case by the lack of PLC on the decoder
end.

Figure 2 provides an analogous view, plotting
PESQ and its estimation as a function of
MLBS. It can be noticed in this plot that the
estimated values are not as expected for burst
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Figure 1: Case of PLC= 0. PESQ and its predictor f0, as an explicit function of LR. Each spot
corresponds to a specific configuration in the small table. Different spots for a same LR correspond
to different values for MLBS.



losses higher than two or three packets, in which
case the estimations are overly optimistic with
respect to actual PESQ values. We do not,
at the time, have a definitive explanation for
this phenomenon. However, given the good
correlation for PSQA and subjective scores
obtained in previous study, we suspect that
the variability of PESQ results with respect
to MLBS might have precluded the NN from
capturing the correct behavior.

Figures 3 and 4 illustrate the case of PLC = 1.
As expected, the overall values in this case are
higher (by about 0.5 MOS points) than in the
non-PLC scenario. Otherwise, the overall be-
havior of PESQ and the NN–based estimations
are comparable to the non–PLC case, but with
smaller errors.

Consider again the original set of data (the
large table), over 105 voice samples, with the
corresponding values of loss rate, mean loss burst
size and PLC, together with the quality assess-
ment made by PESQ. If we use our functions fi

for approximating the PESQ scores for all of the
data points, what would be the mean error? Ob-
serve that this is quite close of a field application
of our approach, even if this table of values is the
original data with which the training data sets
were built. Denote

• by s a generic entry in the original table
(a sample); there are more than 105 such
samples;

• by PLC(s) the value of PLC in sample s;

• by fPLC(s)(s) the value predicted by the
right NN when the configuration is the one
in sample s;

• finally, let PESQ(s) be the PESQ assess-
ment of sample s.

Table 2 shows the Mean Square Error (MSEi),
its square root and the Mean Absolute Error
(MAEi), corresponding to function fi, defined
as follows:

MSEi =
1

Ni

∑

s:PLC(s)=i

[

fPLC(s)(s) − PESQ(s)
]2

,

MAEi =
1

Ni

∑

s:PLC(s)=i

∣

∣fPLC(s)(s) − PESQ(s)|.

Table 2: Performances of the two selected Neural
Networks f0 and f1

neural MSE
√

MSE MAE
network

f0 0.236 0.486 0.412
f1 0.076 0.276 0.221

This implies that the NN–based estimations
are on average, at about 0.41 points from actual
PESQ scores for samples in which PLC was
not used, and at about 0.22 points for samples
in which it was enabled. Given the average
listener’s appreciation in terms of the MOS
scale, it seems that the estimations are indeed
very close to the actual values. This closeness
can be seen in Figure 5, which shows, for a loss
rate of 12% all the PESQ scores in the complete
data set, separated by MLBS value, and the
NN’s estimation of them.
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Figure 2: Case of PLC= 0. PESQ and its predictor f0, as an explicit function of MLBS. Each
spot corresponds to a specific configuration in the small table. Different spots for a same MLBS
correspond to different values for LR.
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Figure 3: Case of PLC= 1. PESQ and its predictor f0, as an explicit function of LR. Each spot
corresponds to a specific configuration in the small table. Different spots for a same LR correspond
to different values for MLBS.
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Figure 4: Case of PLC= 1. PESQ and its predictor f0, as an explicit function of MLBS. Each
spot corresponds to a specific configuration in the small table. Different spots for a same MLBS
correspond to different values for LR.
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Figure 5: PESQ values for all points in the data set, where LR=12. Each area represents a separate
MLBS value, and the horizontal lines represent the NN’s estimation of the PESQ score. PLC=1.



4 Conclusions

In this paper we have presented a sim-
ple, efficient way of providing single–sided,
reference–free estimations of PESQ scores for
VoIP samples or ongoing streams. The method
used was PSQA (Pseudo–Subjective Quality
Assessment), but using PESQ as a target
function instead of subjective scores, as was
done previously.

While this will evidently not increase the
correlation of PSQA with respect to subjective
scores, it provides a very cheap and efficient way
of having a single–sided quality assessment tool.
Moreover, the evaluation by NNs is very compu-
tationally efficient, which allows this mechanism
to be used in real–time, for control purposes, for
example, even in resource–constrained devices
such as mobile phones or Internet tablets
(unlike, say, the ITU’s P.563 [11] single sided
metric, which is very resource–intensive).

The reliability of the results obtained is
slightly variable with network conditions, as
depicted in Figures 1 through 4. However, it
should be noted that firstly, for normal operat-
ing conditions, in which network impairments
are not too high, the estimations are remarkably
close to actual PESQ scores. Secondly, since
PESQ itself shows reliability issues in cases
where the network is severely impaired, a differ-
ent approach should be tried in these scenarios,
as needed.

In future work on this subject, we plan on de-
termining the impairment bopundaries in which
using this sort of approach works well in prac-
tice, and using it to implement some sort of
QoE control mechanism (either application or

network–based). It would be also interesting to
use different kinds of neural networks (for exam-
ple in a recurrent architecture, instead of feed–
forward) and also to re–use the data obtained
in this work to train a Random Neural Network
(RNN, cf [12]), which we have previously used
with success for PSQA applications.
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