
Gilbert-model Loss Trace Generator for

Instrumentation of Subjective Assessment

Campaigns

Mart́ın Varela - VTT

2012–01–19

Abstract

This program allows the generation of several accurate (with respect
to pre-defined target values) loss traces following a simplified Gilbert loss
model (2-states, one with no losses, and one with loss probability = 1).
For subjective testing, the challenge lies in getting the right stats within
a few hundred packets, as test sequences are only ∼ 10slong. We take a
brute-force approach, generating several samples per combination of loss-
rate and mean loss burst size until enough sufficiently good traces are
generated.

1 Preliminaries

We will define our Main module and import some standard library func-
tions and types.

module Main where
import Data.List
import System.Random
import System.Environment

2 Packet Sequences

A network flow is represented by a sequence of packets, which either arrive
at their destination, or don’t. We model this by the type Packet, defined
as follows:

data Packet = POK | PLOST deriving Eq
instance Show Packet where

show POK = "0"

show PLOST = "1"

1



3 Valid Sequences

For a given sequence of packets σ, and target values for the loss rate
and mean loss burst size, LRt and MLBSt respectively, we consider σ to
be suitable if the difference of the observed loss rate and MLBS in the
sequence, LRσ and MLBSσ and the target values is lower than a given
threshold.

We will define the thresholds at a 5% of LRt for the loss rate, and 0.1
packets for the mean loss burst size, and so our conditions for accepting
a sequence as valid are

| LRt − LRσ |⩽ 0.05× LRt

and
|MLBSt −MLBSσ |⩽ 0.1

There is an issue with the definition of the mean loss burst size when
no losses occur. For some applications, it may be convenient to define it
as 1, while in other cases it might be better to define it as 0 (as indeed,
if there are no losses, speaking of the mean loss burst size does not make
sense). However, for QoE estimation purposes using PSQA or a similar
technique, defining it as 0 might be problematic as it introduces a discon-
tinuity in the mean loss burst size axis (i.e. when there are losses, for any
loss rate, the mean size of each burst is at least 1). We will, therefore,
define the mean loss burst size of a lossless sequence as 1, define our func-
tions accordingly.

We then have:

checkSequence ::Double→ Double→ [Packet ]→ Bool
checkSequence tlr tmlbs s
| tlr > 0 = (abs $ tlr − lr s) ⩽ 0.05 ∗ tlr ∧

(abs $ tmlbs − mlbs s) ⩽ 0.1
| otherwise = lr s ≡ 0

We calculate the loss rate in the sequence by counting the number of
lost packets and dividing over the sequence length.

lr xs = (fromIntegral . length . filter ( ≡ PLOST) $ xs) /
(fromIntegral . length $ xs)

The mean loss burst size is calculated as the average of the lengths of
loss events (i.e. instances where one or more packets are lost). To this end
we extract the loss events from the sequence, and calculate the average
of their lengths. As discussed above, if there are no losses, then we define
the mean loss burst size as one.

mlbs xs
| length l events > 0 = (fromIntegral . sum . map length $

l events) / (fromIntegral . length $
l events)

| otherwise = 1
where

2



l events = (filter (λe → head e ≡ PLOST)) .
(groupBy (λx y → x ≡ y ∧ y ≡ PLOST)) $
xs

4 Sequence Generation

In order to generate sequences with the desired loss process, we need to
calculate, from the target parameters LRt and MLBSt, the probabilities
for the simplified Gilbert model. The conversion is given by

p =
1

MLBSt

LRt

1− LRt

and

q =
1

MLBSt

where p and q correspond to the probabilities of going from the no-loss
state to the loss state, and vice-versa, respectively, as seen in Figure 1.

10

q

1 − p

p

1 − q

Figure 1: The simplified Gilbert model.

Sequences need to be generated with a pre-defined length, and we
will need to obtain several different sequences with similar statistical loss
behavior. So if we want to obtain k sequences with a certain loss rate tlr
and mean loss burst size tmlbs within a certain tolerance as defined in
Section 3, then we can imagine generating an infinite list of sequences ls
with the target parameters and selecting from those the first k sequences
that are valid.

We can then write

selectSequences :: Int→ Double→ Double→ [ [Packet ]]→
[[Packet ]]

selectSequences k tlr tmlbs s = take k $
filter (checkSequence tlr tmlbs) s

It now remains the task of generating the actual sequences with the
desired targets. Since it would be useful to obtain repeatable traces, we
start by taking a seed as an argument. We’ll use that seed to generate a
pseudo-random sequence of integer seeds for creating new generators for
the actual packet loss sequences. In this way, we get the repeatability,

3



and we keep a larger portion of the code pure. Since there are no guar-
antees on whether the desired combination of loss rate and mean burst
size is attainable, and we want to avoid a non-halting situation, we’ll add
some bounds to our search space by limiting the number of seeds to be
used. We will chose an arbitrary limit for this, but if need be, it could be
parametrized.

seeds s = take 50000 (randoms $ mkStdGen s) :: [Int ]

In order to generate the sequences, we need to implement the two-
state Markov chain depicted in Figure 1. We use one of the previously
generated seeds to feed a new generator, and use this to simulate the
chain. So, the creation of a sequences takes as arguments the transition
probabilities for the Markov chain, the desired sequence length, and a
seed for the pseudo-random number generator. We always start from a
loss-free state.

createSequence ::Double→ Double→ Int→ Int→ [Packet ]
createSequence tlr tmlbs k s = unfoldr fgen (p, q ,POK, probs)

where
probs = take k $ (randoms $ mkStdGen s) :: [Double ]
p = (tlr / (1 − tlr)) / mbs
q = 1 / mbs
mbs
| tmlbs > 0 = tmlbs
| otherwise = 1

fgen :: (Double,Double, Packet, [Double ])→
Maybe (Packet, (Double,Double, Packet, [Double ]))

fgen ( , , , [ ]) = Nothing
fgen (p, q , current , probs) = Just (next , (p, q ,next , tail probs))

where
next = case current of

POK → if (p ⩽ head probs)
then POK

else PLOST

PLOST → if (q ⩽ head probs)
then PLOST

else POK

Having the means to generate sequences with the desired target loss
characteristics, we just create an infinite list of such sequences, from which
we will then choose as many as we need. It should be noted that depending
on the target values and tolerances, this might result in a non-halting
computation, as some combinations of target values and sequence length
are not feasible.

sequences ::Double→ Double→ Int→ Int→ [[Packet ] ]
sequences tlr tmlbs k s = map (createSequence tlr tmlbs k) $

seeds s

4



With the sequence generation solved, we can now build the rest of the
program, which will take arguments for the target loss rate, the target
mean loss burst size, the length of the sequences to be generated, the
number of sequences to be generated, and a seed for the RNG. The pro-
gram will then create two files per sequence generated (one with binary
information for each packet, and one with a list of lost packets given by
their position in the flow), and a file with the actual loss rates and mean
loss burst sizes of the sequences generated, for validation purposes.

main = do
args ← getArgs
let tlr = read $ args !! 0 ::Double

tmlbs = read $ args !! 1 ::Double
lenS = read $ args !! 2 :: Int
numS = read $ args !! 3 :: Int
seed = read $ args !! 4 :: Int

mapM (createF ile tlr tmlbs seed) $
zip [1 . .] (selectSequences numS tlr tmlbs $

sequences tlr tmlbs lenS seed)

The creation of the trace and statistics files is handled like so:

createF ile ::Double→ Double→ Int→
(Int, [Packet ])→ IO ()

createF ile tlr tmlbs seed (seqno, s) = do
let outfile = concat ["trace_"

, show tlr
, "_"
, show tmlbs
, "_"
, show seed
, "_"
, show seqno
, ".txt"]

kaufile = concat ["kau_trace_"
, show tlr
, "_"
, show tmlbs
, "_"
, show seed
, "_"
, show seqno
, ".txt"]

statsfile = concat ["stats_"
, show tlr
, "_"
, show tmlbs
, "_"
, show seed

, ".txt"]
stats = concat ["Sequence "

5



, show seqno
, " lr = "

, show $ lr s
, ", mlbs = "

, show $ mlbs s
, "\n" ]

writeFile outfile $ concat $ map (show) s
writeFile kaufile $ concat $ intersperse "\n" $

map (show . fst) $
filter (λx → snd x ≡ PLOST) $ zip [1 . .] s

appendFile statsfile stats

6



5 License

Copyright (C) 2012, Mart́ın Varela
This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

7


