
 1

1 Introduction

Smart cards have been in use since the early
seventies, and their applications have evolved as
a result of technological advances. JavaCards are
a class of smart cards that have a special Java
Virtual Machine (JCVM, for JavaCard Virtual
Machine) embedded. The range of applications
varies from healthcare or digital wallets to
loyalty programs or access control. As the
JavaCard technology spreads, new applicative
areas for JavaCards (and smart cards in general)
are considered.
JavaCards allow more than one application
(called Applets) to coexist in them. This makes
them very attractive, as the user can have, for
example, a banking application, an e-wallet and
his driving license in the same card.

When an applet is installed, it is given an AID
(Applet Identifier as defined in ISO 7816-
5)[ZHI], which is unique. When a company
wants to deploy an applet, it must obtain an AID
for it from the ISO. In the card, applets exist in
Applet Contexts, which are isolated object
spaces where all the objects of a certain package
coexist. The JavaCard Runtime Environment
(JCRE) [SUN1] enforces the object space
isolation by means of the Applet Firewall. The
firewall prevents objects in a certain context
from directly accessing objects in another
context. The JavaCard specification 2.1 provides
applet developers with a way to share data and
services between applets. This is called object
sharing.

In this paper, we put forward a methodology for
secure object sharing on the JavaCard platform.
Our proposal is inspired by the work of
Montgomery and Krishna, from Schlumberger
[MONKRI]. That work is concerned with object
sharing and proposes an approach to solve some
of the problems that arise in the object sharing
model proposed in the JavaCard 2.1 specification
[SUN1]. Their work suggests some
modifications to the JCRE specification as a
possible solution to those problems. We base our
approach on a methodology rather than on
changes to the specification.

The next section comments on the object
sharing model of JavaCard 2.1 specification and
on Schlumberger’s approach.
In section 3 we present the proposed
methodology. The case study is described in
section 4. Section 5 presents some comments on
our experiences with a JavaCard emulator (Sun’s
JCWDE), and the conclusions are presented in
section 6.

2 Object Sharing

In this section we present the JavaCard 2.1
specification object sharing model.
The mechanism proposed has several flaws,
which we will present, along with the solution
presented in [MONKRI].

2.1 The JavaCard 2.1 Object Sharing
Model

In JavaCards, each applet exists within its own
context, along with other objects from its
package, and an applet cannot directly access
objects in other applet’s context. This makes for
increased data security, but it limits the degree of
interaction between applets. In earlier
specifications of the JavaCard platform, the only
way for applets to share data was by means of
files. These files were protected by access
control lists [MONKRI]. JavaCard 2.0
specification [SUN2] introduced the concept of
object sharing, but with very important
restrictions [SUN3]. The JavaCard 2.1
specification introduces the notion of Shareable
Interface, which defines a set of methods that an
applet may export through the firewall. If a
developer wants certain methods in his applet
(the server) to be exported, he must declare them
in an interface that extends the tagging interface
javacard.framework.Shareable. This
tells the JCRE that these methods can be
accessed from other contexts. Then, the
developer must implement the defined interface
(which is called a Shareable Interface) in a class,
and instantiate an object of that class to obtain a
Shareable Interface Object (SIO). When another
applet (client applet) wants to access the
exported methods, it must first declare a

A Simple Methodology for Secure Object Sharing

Daniel Perovich Leonardo Rodríguez Martín Varela
<perovich@fing.edu.uy> <lrodrigu@fing.edu.uy> <mvarela@fing.edu.uy>

Instituto de Computación
 Facultad de Ingeniería

Universidad de la República
October 2000

 2

reference of the type defined by the server’s
Shareable Interface, and then invoke the
JCSystem.getAppletShareableInter
faceObject method, indicating the AID
(application identifier) of the server applet
[SUN1, SUN4] The JCRE responds to this by
invoking the server applet’s
getShareableInterfaceObject, (this
method is defined in the
javacard.framework.Applet abstract
class, from which all applets descend), indicating
the AID of the client applet. The server applet
then decides, based on the client’s AID, if the
client is authorized to access the required SIO,
and returns either a reference to that SIO, or null.

JCREClient Server

1
2

3

4

1 - Client invokes JCSystem.getAppletShareableInterfaceObject(serverAID,options)
2 - JCRE invokes Server.getShareableInterfaceObject(c lientAID,options)
3 - Server returns the requested SIO, or null, depending on the client’s AID
4 - The JCRE passes the result to the client

Figure 1. JavaCard 2.1 Object Sharing
Mechanism.

This is just an outline of the object sharing
mechanism, and the reader should refer to the
JCRE specification [SUN1] for details.

2.2 Problems with Object Sharing

As described in [MONKRI], the object sharing
model proposed for JavaCards has serious
weaknesses and limitations.
If the client’s authorization to obtain a SIO is
based on its AID, a malicious applet could be
installed on a compromised card, with the same
AID as a valid client, and thus gain access to
restricted data. Although there should be security
policies to prevent this kind of attack [GIR], it
might not be entirely impossible to carry out.
Another problem with this selection criterion is
that the server applet must know the AID of
every possible client, which would make
impossible to allow access to new clients once
the server applet has been deployed.
It is also possible for a client applet to access a
SIO for which it is not authorized. This happens
only if an object implements more than one

shareable interface, for example A and B. When
this is the case, nothing prevents a client
authorized to access shareable interface A from
casting the reference it gets to shareable interface
B, for which it may not be authorized.
Finally, this mechanism does not allow using
objects passed as parameters in a shareable
method. This is because when a method declared
in a shareable interface is invoked, a context
switch takes place, and the firewall prevents the
server applet from accessing the object received
as a parameter (see [SUN1] from more details on
contexts and context switching).

2.3 Schlumberger’s Delegate Object
approach

In [MONKRI], a solution for some of the
problems that arise in the current object sharing
model is presented.
The proposed solution is based on the existence
of delegate objects. In this approach, when an
applet is registered, it can also register a delegate
object, which will act as its interface with other
applets. This object would manage all the
interaction that the applet has with other applets.
Access to delegate objects would be granted to
any applet requesting it, and the delegate object
manages all security issues. The security
mechanism proposed is the use of a secret key
and a challenge/response sequence, on a per
method basis. This allows two of the problems
that are present in the current model to be solved:
the applet impersonation problem is solved (or at
least partially solved) by the challenge/response
mechanism. The limitation in the number of
client AIDs accepted is also solved, since any
client knowing the secret key, can pass the
challenge posed by the server’s delegate object,
and gain access to the desired methods.
Furthermore, the secret key may be different for
each method or group of related methods, and
thus the client can be limited to a specific set of
methods, based on the secret keys that it knows.

 3

Client
Delegate

Server
Delegate

Server
Applet

Client
Applet

Challenge
C

h
a

lle
n
g

e

Response
R
e

sp
o

n
se

Services

Se
rv

ic
e

s

Se
rv

ic
e

s

Figure 2. The delegate approach.

As all shareable methods are managed by the
delegate object, a client applet cannot gain
unauthorized access to any method by casting, as
it happens in the current model.

The only issue that remains unsolved is
the impossibility of passing objects as
parameters.

3 A Methodology for Secure Object
Sharing

The delegate object model proposed in
[MONKRI] is not the only way to solve the
problems that the JavaCard 2.1 object sharing
model presents.
Modifying the JavaCard specification to conform
to the delegate object model is a very significant
change, and it could work badly with systems
based on the current specification. Some
correctness criteria should be specified and
verified for the proposed model, so as to make
sure that the changes introduced will not affect
the rest of the JCRE.
However, some of the ideas behind the delegate
object approach can be implemented under the
current specification, based on a development
methodology, which we now proceed to present.

3.1 Overview

The basic idea behind our approach is that, in
order to obtain a SIO, a client must first register
itself with the server. The registration process
includes an authorization process, based on a
challenge/response sequence. The registration
lasts, at most, for the rest of the Card Acceptance
Device (CAD) session. This is to prevent the
substitution of a valid client applet for a
malicious one, once the client has registered
itself.

Once the client is registered, it can obtain the
SIOs it needs.
This methodology allows for many different
implementations, which may vary depending on
the security needs of the application, the number
of SIOs that the server offers and so on. We will
discuss some examples of this later.

3.2 Basic Components

Our methodology is based on the existence of an
object in the server package, which we call
SecureSIO. This object is an instance of an
implementation of a sharable interface, called
SecureSI. This interface, in turn, provides
methods that allow a client to prove its
authenticity in order to obtain the required SIOs.

The basic implementation might be improved by
using an AuthorizationManager (AMgr), which
keeps record of all registered clients together
with the SIOs they can access during a session.
Both a SecureSIO and an AMgr manage all the
security issues within the server. A new method
is added to the SecureSI by means of which a
client can unregister itself after it has finished
using a SIO, so as to allow the AMgr, which has
limited space for registration information, to
accept more entries.

3.3 How does this work?

When a client wants to obtain a SIO from a
server, it invokes the method
JCSystem.getAppletShareableInter
faceObject, as it would normally do. As
mentioned in section 3.1, this JCRE method in
turn invokes the server’s
getShareableInterfaceObject method.
This method should be redefined in the server to
act as follows: the server queries the AMgr to
verify that the client is authorized to obtain the
SIO it is asking for. If the client is authorized,
the server then returns the corresponding SIO.
Otherwise, the server returns the SecureSIO, to
allow the client to register itself. The client then
proves its authenticity, and asks again for the
desired SIO.

To obtain authorization, the client must ask the
SecureSIO for a challenge, which will eventually
depend on the SIO it is asking for. Once the
client gets the challenge, it must provide a

 4

response for it, and if that response is correct, the
SecureSIO proceeds to register it with the
AuthorizationManager. It is important to note
that in every moment, it is the client that initiates
the communication with the server. This is to
prevent a malicious applet from posing the client
different challenges, and using it as a translator.

Server
Client

 Get the SecureSIO

Return the SecureSIO

 Get challenge

Issue response

Get the desired SIO

A

A

B

C

B

C

short Challenge(byte option)

byte response(short resp)
[OK]

Shareable getShareableObjectInterface(AID client, byte SIO)

Reg = isRegistered(client,SIO)

[Reg]

[!Reg]

SIO

SecureSIO

Figure 3. The proposed Object Sharing
Mechanism.

Making the client start all communications does
not make the hack mentioned above completely
impossible, but it makes it harder to implement,
since the client must be externally stimulated to
make it ask for a certain SIO, and then use it to
translate a secret key.
Given that the number of registered clients in the
AuthorizationManager is limited, and in some
cases, there could be many applets interacting
with the server, the client may unregister itself to
free space in the list of registered clients. In
order to do this, it requires the SecureSIO to the
server, and uses the unregister method it
provides.

We now proceed to comment on some
implementation issues that must be considered
for the system to work as desired.

3.4 Applet Impersonation and Casting

Inappropriate casting is feasible only when
several shareable interfaces are implemented in a
single class. A way around this problem is to
implement each shareable interface on a separate
class, and to make sure these classes are not in
the subclassing relation. This makes it
impossible for the client to cast the SIO it
obtains to another shareable interface
[MONKRI].

As to impersonation, the AMgr is required to
store the session’s authorizations in
CLEAR_ON_RESET transient objects, so that a
client that has been registered during a session
cannot be replaced with a malicious one for the
next CAD session.

In addition, the AuthorizationManager can be
implemented so that it stores authorizations for
clients at method level, thus achieving the same
granularity that delegate objects provide.

4 A Small Case Study

We now turn to present an experiment we
developed using the JavaCard Workstation
Desktop Environment (JCWDE), SUN’s
JavaCard 2.1 emulator.

We implemented a small and very simple server,
which offers two different SIOs, and interacts
with a number of clients. The server applet itself
does nothing but receive requests from the
clients. All the services offered are implemented
in the SIOs, which reduces the server’s logic to
its getShareableInterfaceObject
method.
The two SIOs offered are a small wallet, which
exports three methods and a simplified medical
record, which exports two methods.

 5

The interaction between the server and the
clients is as depicted in figure 3. When the client
wants a certain SIO, it asks the server for it. The
implementation of the server’s

Figure 4. Server’s getShareableInterfaceObject
method.

getShareableInterfaceObject method
enforces the mechanism proposed, by checking
with the AMgr (mgr) to verify whether the client
is registered for that SIO or not.

If the client is registered, the method returns the
appropriate SIO (be it data, or pocket). In case
the client is not registered, it returns the
SecureSIO (sSIO). In this implementation, the
method returns null if an invalid SIO is asked
for.

In this small example, the security issue is
outlined, but not properly solved. The SecureSIO
does not use any cryptographic protection, as it
should. We left it out in order to keep the
example simple.
When a client invokes the register method
on the SecureSIO, it can obtain three possible
results, depending on both the response provided
and the space available in the Authorization
Manager. Although the methodology allows for
many clients requesting many SIOs from a single
server in a single CAD session, most

applications probably won’t use that much applet
interaction, and so the AMgr’s space limitations
shouldn’t be an issue.

Figure 5. The SecureSIO class.

public Shareable
getShareableInterfaceObject(AID client,
byte sio){
 switch(sio){
 case SECURE_SIO:
 return sSIO;

 case SHAREABLE_POCKET: {
 if
(mgr.isRegistered(client,sio)){
 return pocket;
 }
 else{
 return sSIO;
 }

 }
 case SHAREABLE_DATA: {

 if(mgr.isRegistered(client,sio)){
 return data;
 }
 else{
 return sSIO;
 }

 }
 default: return null;
 }

}

public class SecureSIO implements SecureSI {
 short currentChallenge = -1;
 byte currentSIO = 0;
 private AuthorizationManager mgr = null;

 public SecureSIO(AuthorizationManager amgr){
 mgr = amgr;
 }

 public short challenge(byte sio){
 currentSIO = sio;
 currentChallenge = sio;
 return currentChallenge;

 }

 public byte response(short resp){
 if(responseOk(resp)){

 if(mgr.register(JCSystem.getPreviousContextAID(),curre
ntSIO)){
 return SecureSI.RESPONSE_OK;
 }
 else{
 return SecureSI.NO_ROOM;
 }
 }
 else{
 return SecureSI.RESPONSE_FAILED;
 }

 }

 public void unregister(byte sio){
 mgr.unregister(JCSystem.getPreviousContextAID(),
sio);
 }

 private boolean responseOk(short resp){

 return (resp == currentChallenge);

 }
}

 6

The implementation of the
AuthorizationManager consists of a pair of
arrays, containing a list of client AID’s, and a list
of SIOs, which are managed in parallel. Each
pair of elements represents an entry to the
AuthorizationManager.

Figure 6. The AuthorizationManager class.

5 Notes on our experience with Sun’s
JCWDE

All the implementations that we have done so far
have been developed with the Sun’s JavaCard
Development Kit 2.1. This kit provides tools for
converting and verifying class files, emulating a
JavaCard, and testing applets with APDU scripts.
As to simulation itself, it provides the JCWDE,
which is a (limited) card simulator, and the
APDUtool, which is an APDU scripting tool.
Based on our experience with this kit, we believe
that it needs some improvements. Firstly, and as
described in the JavaCard Development Kit
Release Notes [SUN5], there are core aspects of
a JavaCard that have been left out, such as the
firewall, and the impossibility of simulating a
card reset.
Secondly, there is no easy way of creating
APDU scripts, which must be written as strings
of hex numbers. This could be easily improved,
and it would save a great deal of time and errors.

6 Conclusions

We presented a methodology that may help
developers to avoid some of the problems that
arise when using the JavaCard 2.1 object sharing
model.
The methodology proposed is simple to
implement, and very flexible.
Although the overhead introduced by the use of
the methodology may be greater than that of the
delegate object approach, it does not require any
changes in the JavaCard specification, which
allows developers to use it with the existing
implementations of JavaCard 2.1.
Since we only tested the methodology on a very
simple case, and running on an emulator, there is
still a lot of work to do, starting by implementing
it on a real system, and on more complex cases.

public class AuthorizationManager {
 private Object[] currentClients = null;
 private byte[] authorizedSIOs = null;
 private byte currentAmount = 0;

protected AuthorizationManager(byte amount)
throws SystemException {
 byte i;
 currentClients =
JCSystem.makeTransientObjectArray(amount,
JCSystem.CLEAR_ON_RESET);
 authorizedSIOs =
JCSystem.makeTransientByteArray(amount,
JCSystem.CLEAR_ON_RESET);
 for(i = 0;i< currentClients.length;
i++){
 currentClients[i] = null;
 }
 }

public boolean isRegistered(AID aid, byte
sio){
 byte i = 0;
 while(i<currentAmount){
 if (aid.equals(currentClients[i]) &&
sio==authorizedSIOs[i]){
 return true;
 }
 else {
 i++;
 }
 }
 return false;
 }

public void unregister(AID aid, byte sio){
 byte i = 0;
 while(i<currentAmount){
 if (aid.equals(currentClients[i]) &&
authorizedSIOs[i++] == sio){
 authorizedSIOs[i] =
authorizedSIOs[currentAmount - 1];
 currentClients[i] = currentClients[-
-currentAmount];
 break;
 }
 }
}

public boolean register(AID aid, byte sio){
 if (isRegistered(aid,sio)) return true;

if(currentAmount==currentClients.length)
{return false;

 }
 else{
 authorizedSIOs[currentAmount] = sio;
 currentClients[currentAmount++] = aid;
 return true;
 }
 }

}

 7

7 References

• [MONKRI] Montgomery, M. and Krishna, K. - Secure Object Sharing in Java Card.
Workshop on Smartcard Technology (Smartcard '99), USENIX, May 1999.

• [ZHI] Zhiqun Chen - How to write a Java Card Applet: A developer’s guide
http://www.javaworld.com/javaworld/jw-07-1999/jw-07-javacard.html

• [SUN1] Java Card 2.1 Runtime Environment (JCRE) Specification. Sun Microsystems, 1999.
http://www.javasoft.com/products/javacard/

• [SUN2] JavaCard 2.0 Language Subset and Virtual Machine Specification. Sun Microsystems,
1997.
http://www.javasoft.com/products/javacard/

• [SUN3] JavaCard 2.0 Programming Concepts. Sun Microsystems, 1997.

http://www.javasoft.com/products/javacard/

• [SUN4] JavaCard 2.1 Application Programming Interface. Sun Microsystems, 1999.
http://www.javasoft.com/products/javacard/

• [SUN5] JavaCard 2.1 Development Kit Release Notes. Sun Microsystems, 1999.

http://www.javasoft.com/products/javacard/

• [GIR] Girard, P. - Which Security Policy for Multiapplication SmartCards
Workshop on Smartcard Technology (Smartcard '99), USENIX, May 1999.

8 Acknowledgements

We would like to thank all the people who helped us in the process of writing this paper, especially
Eduardo Giménez and Gustavo Betarte.

